Accepted Papers

Optimizing cluster-based randomized experiments under monotonicity

Jean Pouget-Abadie (Harvard University); David Parkes (Harvard University); Vahab Mirrokni (Google); Edoardo M. Airoldi (Harvard University)

Cluster-based randomized experiments are popular designs for mitigating the bias of standard estimators when interference is present and classical causal inference and experimental design assumptions (such as SUTVA or ITR) do not hold. Without an exact knowledge of the interference structure, it can be challenging to understand which partitioning of the experimental units is optimal to minimize the estimation bias. In the paper, we introduce a monotonicity condition under which a novel two-stage experimental design allows us to determine which of two cluster-based designs yields the least biased estimator. We then consider the setting of online advertising auctions and show that reserve price experiments satisfy the monotonicity condition and the proposed framework and methodology apply. We validate our findings on an advertising auction dataset.

Promotional Video

How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

If you are experiencing any issue related to registrations (confirmation, payment problem etc.) or have any questions regarding registrations, please do not submit this form. Please send an email to Kelly Hughes ( or call 1.888.526.1242 or 303.530.4683.