A PHP Error was encountered

Severity: 8192

Message: Non-static method URL_tube::usage() should not be called statically, assuming $this from incompatible context

Filename: url_tube/pi.url_tube.php

Line Number: 13

KDD 2018 | Neural Memory Streaming Recommender Networks with Adversarial Training

Accepted Papers

Neural Memory Streaming Recommender Networks with Adversarial Training

Qinyong Wang (The University of Queensland); Hongzhi Yin (The University of Queensland); Zhiting Hu (Language Technologies Institute, Carnegie Mellon University); Defu Lian (School of Computer Science and Engineering, University of Electronic Science and Technology of China); Hao Wang (360 Search Lab); Zi Huang (The University of Queensland)

With the increasing popularity of various social media and E-commerce platforms, large volumes of user behaviour data (e.g., user transaction data, rating and review data) are being continually generated at unprecedented and ever-increasing scales. It is more realistic and practical to study recommender systems with inputs of streaming data. User-generated streaming data presents unique properties such as temporally ordered, continuous and high-velocity, which poses tremendous new challenges for the once very successful recommendation techniques. Although a few temporal or sequential recommender models have recently been developed based on recurrent neural models, most of them can only be applied to the session-based recommendation scenario, due to their short-term memories and the limited capability of capturing users’ long-term stable interests. In this paper, we propose a streaming recommender model based on neural memory networks with external memories to capture and store both long-term stable interests and short-term dynamic interests in a unified way. An adaptive negative sampling framework based on Generative Adversarial Nets (GAN) is developed to optimize our proposed streaming recommender model, which effectively overcomes the limitations of classical negative sampling approaches and improves both effectiveness and efficiency of the model parameter inference. Extensive experiments have been conducted on two large-scale recommendation datasets, and the experimental results show the superiority of our proposed streaming recommender model in the streaming recommendation scenario.

Promotional Video