Accepted Papers
- Home /
- Accepted Papers /
Local Latent Space Models for Top-N Recommendation
Evangelia Christakopoulou (University of Minnesota); George Karypis (University of Minnesota)
Users’ behaviors are driven by their preferences across various aspects of items they are potentially interested in purchasing, viewing, etc. Latent space approaches model these aspects in the form of latent factors. Although such approaches have been shown to lead to good results, the aspects that are important to different users can vary. In many domains, there may be a set of aspects for which all users care about and a set of aspects that are specific to different subsets of users. To explicitly capture this, we consider models in which there are some latent factors that capture the shared aspects and some user subset specific latent factors that capture the set of aspects that the different subsets of users care about.
In particular, we propose two latent space models: rGLSVD and sGLSVD, that combine such a global and user subset specific sets of latent factors. The rGLSVD model assigns the users into different subsets based on their rating patterns and then estimates a global and a set of user subset specific local models whose number of latent dimensions can vary.
The sGLSVD model estimates both global and user subset specific local models by keeping the number of latent dimensions the same among these models but optimizes the grouping of the users in order to achieve the best approximation. Our experiments on various real-world datasets show that the proposed approaches significantly outperform state-of-the-art latent space top-N recommendation approaches.