Accepted Papers

Towards Knowledge-Based Personalized Product Description Generation in E-commerce

Qibin Chen, Junyang Lin, Yichang Zhang, Hongxia Yang, Jingren Zhou and Jie Tang

Quality product descriptions are critical for providing competitive customer experience in an E-commerce platform. An accurate and attractive description not only helps customers make an informed decision but also improves the likelihood of purchase. However, crafting a successful product description is tedious and highly time-consuming. Due to its importance, automating the product description generation has attracted considerable interest from both research and industrial communities. Existing methods mainly use templates or statistical methods, and their performance could be rather limited. In this paper, we explore a new way to generate personalized product descriptions by combining the power of neural networks and knowledge base. Specifically, we propose a KnOwledge Based pErsonalized (or KOBE) product description generation model in the context of E-commerce.

In KOBE, we extend the encoder-decoder framework, the Transformer, to a sequence modeling formulation using self-attention. In order to make the description both informative and personalized, KOBE considers a variety of important factors during text generation, including product aspects, user categories, and knowledge base. Experiments on real-world datasets demonstrate that the proposed method outperforms the baseline on various metrics. KOBE can achieve an improvement of 9.7% over state-of-the-arts in terms of BLEU. We also present several case studies as the anecdotal evidence to further prove the effectiveness of the proposed approach. The framework has been deployed in Taobao, the largest online E-commerce platform in China.


How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: