Accepted Papers

Predicting Path Failure In Time-Evolving Graphs

Jia Li (The Chinese University of Hong Kong);Zhichao Han (The Chinese University of Hong Kong);Hong Cheng (The Chinese University of Hong Kong);Jiao Su (The Chinese University of Hong Kong);Pengyun Wang (Noah Ark's Lab, Huawei Technologies);Jianfeng Zhang (Noah Ark's Lab, Huawei Technologies);Lujia Pan (Noah Ark's Lab, Huawei Technologies);

In this paper we use a time-evolving graph which consists of a sequence of graph snapshots over time to model many real-world networks. We study the path classification problem in a time-evolving graph, which has many applications in real-world scenarios, for example, predicting path failure in a telecommunication network and predicting path congestion in a traffic network in the near future. In order to capture the temporal dependency and graph structure dynamics, we design a novel deep neural network named Long Short-Term Memory R-GCN (LRGCN). LRGCN considers temporal dependency between time-adjacent graph snapshots as a special relation with memory, and uses relational GCN to jointly process both intra-time and inter-time relations. We also propose a new path representation method named self-attentive path embedding (SAPE), to embed paths of arbitrary length into fixed-length vectors. Through experiments on a real-world telecommunication network and a traffic network in California, we demonstrate the superiority of LRGCN to other competing methods in path failure prediction, and prove the effectiveness of SAPE on path representation.


How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: