Accepted Papers

OAG: Toward Linking Large-scale Heterogeneous Entity Graphs

Fanjin Zhang, Xiao Liu, Jie Tang, Yuxiao Dong, Peiran Yao, Jie Zhang, Xiaotao Gu, Yan Wang, Bin Shao, Rui Li and Kuansan Wang


Linking entities from different sources is a fundamental task in building open knowledge graphs. Despite much research conducted in related fields, the challenges of linkinglarge-scale heterogeneous entity graphs are far from resolved. Employing two billion-scale academic entity graphs (Microsoft Academic Graph and AMiner) as sources for our study, we propose a unified framework—- LinKG—- to address the problem of building a large-scale linked entity graph. LinKG is coupled with three linking modules, each of which addresses one category of entities. To link word-sequence-based entities (e.g., venues), we present a long short-term memory network-based method for capturing the dependencies. To link large-scale entities (e.g., papers), we leverage locality-sensitive hashing and convolutional neural networks for scalable and precise linking. To link entities with ambiguity (e.g., authors), we propose heterogeneous graph attention networks to model different types of entities. Our extensive experiments and systematical analysis demonstrate that LinKG can achieve linking accuracy with an F1-score of 0.9510, significantly outperforming the state-of-the-art. LinKG has been deployed to Microsoft Academic Search and AMiner to integrate the two large graphs. We have published the linked results—-the Open Academic Graph (OAG)\footnote\urlhttps://www.openacademic.ai/oag/ , making it the largest publicly available heterogeneous academic graph to date.

Download

How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: