Accepted Papers

MinJoin: Efficient Edit Similarity Joins via Local Hash Minima

Haoyu Zhang (Indiana University Bloomington);Qin Zhang (Indiana University Bloomington);


We study the problem of computing similarity joins under edit distance on a set of strings. Edit similarity joins is a fundamental problem in databases, data mining and bioinformatics. It finds important applications in data cleaning and integration, collaborative filtering, genome sequence assembly, etc. This problem has attracted significant attention in the past two decades. However, all previous algorithms either cannot scale well to long strings and large similarity thresholds, or suffer from imperfect accuracy.

In this paper we propose a new algorithm for edit similarity joins using a novel string partition based approach. We show mathematically that with high probability our algorithm achieves a perfect accuracy, and runs in linear time plus a data-dependent verification step. Experiments on real world datasets show that our algorithm significantly outperforms the state-of-the-art algorithms for edit similarity joins, and achieves perfect accuracy on all the datasets that we have tested.

Download

How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: