Accepted Papers

K-Multiple-Means: A Multiple-Means Clustering Method with Specified K Clusters

Feiping Nie (School of Computer Science and Center for OPTIMAL, Northwestern Polytechnical University, China.);Cheng-Long Wang (School of Computer Science and Center for OPTIMAL, Northwestern Polytechnical University, China.);Xuelong Li (School of Computer Science and Center for OPTIMAL, Northwestern Polytechnical University, China.);


In this paper, we make an extension of K-means for the clustering of multiple means. The popular K-means clustering uses only one center to model each class of data. However, the assumption on the shape of the clusters prohibits it to capture the non-convex patterns. Moreover, many categories consist of multiple subclasses which obviously cannot be represented by a single prototype. We propose a K-Multiple-Means (KMM) method to group the data points with multiple sub-cluster means into specified k clusters. Unlike the methods which use the agglomerative strategies, the proposed method formalizes the multiple-means clustering problem as an optimization problem and updates the partitions of m sub-cluster means and k clusters by an alternating optimization strategy. Notably, the partition of the original data with multiple-means representation is modeled as a bipartite graph partitioning problem with the constrained Laplacian rank. We also show the theoretical analysis of the connection between our method and the K-means clustering. Meanwhile, KMM is linear scaled with respect to n. Experimental results on several synthetic and well-known real-world data sets are conducted to show the effectiveness of the proposed algorithm.

Download

How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: