Accepted Papers

DuerQuiz: A Personalized Question Recommender System for Intelligent Job Interview

Chuan Qin, Hengshu Zhu, Chen Zhu, Tong Xu, Fuzhen Zhuang, Chao Ma, Jingshuai Zhang and Hui Xiong


In talent recruitment, the job interview aims at selecting the right candidates for the right jobs through assessing their skills and experiences in relation to the job positions. While tremendous efforts have been made in improving job interviews, a long-standing challenge is how to design appropriate interview questions for comprehensively assessing the competencies that may be deemed relevant and representative for person-job fit. To this end, in this research, we focus on the development of a personalized question recommender system, namely DuerQuiz, for enhancing the job interview assessment. DuerQuiz is a fully deployed system, in which a knowledge graph of job skills, Skill-Graph, has been built for comprehensively modeling the relevant competencies that should be assessed in the job interview. Specifically, we first develop a novel skill entity extraction approach based on a bidirectional Long Short-Term Memory (LSTM) with a Conditional Random Field (CRF) layer (LSTM-CRF) neural network enhanced with adapted gate mechanism. In particular, to improve the reliability of extracted skill entities, we design a label propagation method based on more than 10 billion click-through data from the large-scale Baidu query logs. Furthermore, we discover the hypernym-hyponym relations between skill entities and construct the Skill-Graph by leveraging the classifier trained with extensive contextual features. Finally, we design a personalized question recommendation algorithm based on the Skill-Graph for improving the efficiency and effectiveness of job interview assessment. Extensive experiments on real-world recruitment data clearly validate the effectiveness of DuerQuiz, which had been deployed for generating written exercises in the 2018 Baidu campus recruitment event and received remarkable performances in terms of efficiency and effectiveness for selecting outstanding talents compared with a traditional non-personalized human-only assessment approach.

Download

How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: