Accepted Papers

DeepRoof: A Data-driven Approach For Solar Potential Estimation Using Rooftop Imagery

Stephen Lee, Srinivasan Iyengar, Menghong Feng, Prashant Shenoy and Subhransu Maji

Rooftop solar deployments are an excellent source for generating clean energy. As a result, their popularity among homeowners has grown significantly over the years. Unfortunately, estimating the solar potential of a roof requires homeowners to consult solar consultants, who manually evaluate the site. Recently there have been efforts to automatically estimate the solar potential for any roof within a city. However, current methods work only for places where LIDAR data is available, thereby limiting their reach to just a few places in the world. In this paper, we propose DeepRoof, a data-driven approach that uses widely available satellite images to assess the solar potential of a roof. Using satellite images, DeepRoof determines the roof’s geometry and leverages publicly available real-estate and solar irradiance data to provide a pixel-level estimate of the solar potential for each planar roof segment. Such estimates can be used to identify ideal locations on the roof for installing solar panels. Further, we evaluate our approach on an annotated roof dataset, validate the results with solar experts and compare it to a LIDAR-based approach. Our results show that DeepRoof can accurately extract the roof geometry such as the planar roof segments and their orientation, achieving a true positive rate of 91.1% in identifying roofs and a low mean orientation error of 9.3 degree. We also show that DeepRoof’s median estimate of the available solar installation area is within 11% of a LIDAR-based approach.


How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: