Accepted Papers

Deep Anomaly Detection with Deviation Networks

Guansong Pang (The University of Adelaide);Chunhua Shen (The University of Adelaide);Anton van den Hengel (The University of Adelaide);

Although deep learning has been applied to successfully address many data mining problems, relatively limited work has been done on deep learning for anomaly detection. Existing deep anomaly detection methods, which focus on learning new feature representations to enable downstream anomaly detection methods, perform indirect optimization of anomaly scores, leading to data-inefficient learning and suboptimal anomaly scoring. Also, they are typically designed as unsupervised learning due to the lack of large-scale labeled anomaly data. As a result, they are difficult to leverage prior knowledge (e.g., a few labeled anomalies) when such information is available as in many real-world anomaly detection applications. This paper introduces a novel anomaly detection framework and its instantiation to address these problems. Instead of representation learning, our method fulfills an end-to-end learning of anomaly scores by a neural deviation learning, in which we leverage a few (e.g., multiple to dozens) labeled anomalies and a prior probability to enforce statistically significant deviations of the anomaly scores of anomalies from that of normal data objects in the upper tail. Extensive results show that our method can be trained substantially more data-efficiently and achieves significantly better anomaly scoring than state-of-the-art competing methods.


How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: