Accepted Papers

Ambulatory Atrial Fibrillation Monitoring Using Wearable Photoplethysmography with Deep Learning

Maxime Voisin, Yichen Shen, Alireza Aliamiri, Anand Avati, Awni Hannun and Andrew Ng

We develop an algorithm that accurately detects Atrial Fibrillation (AF) episodes from photoplethysmograms (PPG) recorded in ambulatory free-living conditions. We collect and annotate a dataset containing more than 4000 hours of PPG recorded from a wrist-worn device. Using a 50-layer convolutional neural network, we achieve a test AUC of 95% in presence of motion artifacts inherent to PPG signals. Such continuous and accurate detection of AF has the potential to transform consumer wearable devices into clinically useful medical monitoring tools.


How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: