Calls for Papers and Proposals

KDD 2019 Call for Applied Data Science Papers

Key Dates

  • Submission: February 3, 2019
  • Notification: Apr 28, 2019
  • Camera-ready: May 17, 2019
  • Short Promotional Video of Accepted Papers (Required): June 9, 2019
  • Source Code (Optional): June 2, 2019
  • Conference (Anchorage, Alaska): August 4 to August 8, 2019

All deadlines are at 11:59PM Alofi Time. There will be absolutely no exception to these deadlines.


We solicit submissions of papers describing designs and implementations of solutions and systems for practical tasks in data mining, data analytics, data science, and applied machine learning. The primary emphasis is on papers that either solve or advance the understanding of issues related to deploying data science technologies in the real world.

Submitted papers will go through a peer review process.

The Applied Data Science Track is distinct from the Research Track in that submissions focus on applied work addressing real-world problems and systems demonstrating tangible impact/value in their respective domains (eg. industries, government initiatives, social programs).

Submissions must clearly identify the category they fall into:: “deployed” or “evidential. The ADS Chairs might shift a submission from one category to another, if they find that the submission is misplaced. The criteria for submissions in each category are as follows:

CATEGORY Deployed : Must describe implementation of a system that solves a significant real-world problem and is (or was) in production use for an extended period of time. The paper should present the problem, its significance to the application domain, the decisions and tradeoffs made when making design choices for the solution, the deployment challenges, and the lessons learned from successes and failures . Evidence must be provided that the solution has been deployed by quantifying post-launch performance. Papers that describe enabling infrastructure for large-scale deployment of applied machine learning also fall in this category. An example might be a deployed system that collects heartbeat audio from mobile phones during a marathon race and uses machine learning to identify potentially irregular signals and to alert support personnel.

Examples from past KDD conferences:

  • HinDroid: An Intelligent Android Malware Detection System Based on Structured Heterogeneous Information Network
  • Cascade Ranking for Operational E-commerce Search

CATEGORY Evidential : Must describe fundamental insights derived from addressing a significant real-world problem, even though a system has not been deployed. This might include papers providing significant gains in the understanding of a applied area/domain (for example, involving data or system deployment needs) or even papers where a conclusion has been reached that the problem is unsolvable. In addition to insights the paper must explain what milestones were reached, what the practical impact is, and (if applicable) what the obstacles to deployment are. Straightforward improvements over trivial baseline solutions are unlikely to qualify. Continuing the example above, a paper in this category might present a system that achieves reasonable error rates in an experiment with many volunteers but suffers from interferences among mobiles that are located very close to each other.

Examples from past KDD conferences:

  • DeepSD: Generating High Resolution Climate Change Projections through Single Image Super-Resolution
  • A Dirty Dozen: Twelve Common Metric Interpretation Pitfalls in Online Controlled Experiments Backpage and Bitcoin: Uncovering Human Traffickers
  • TFX: A TensorFlow-Based Production-Scale Machine Learning Platform
  • Automated Categorization of Onion Sites for Analyzing the Darkweb Ecosystem

Please consult the guidelines for authors here.

Submission topics include but are not limited to:

Target application area—Business

  • Advertising and E-commerce
  • Finance
  • Marketing
  • Markets and Crowds
  • Recommender systems

Target application area—Life Sciences

  • Bioinformatics
  • Clinical Decision Support
  • Clinical Research
  • Healthcare and Caregiving
  • mHealth
  • Patient Empowerment

Target application area—Social and Network Sciences

  • Crowdsourcing
  • Network sciences
  • Social good
  • Social media and publishing
  • Social sciences
  • User modeling
  • Web mining

Target application area—Facilitating the Learning Process

  • Big Data infrastructures
  • Cloud, Map-Reduce, MPI
  • Data protection
  • Design of experiments
  • Interpretable models
  • Large-scale optimization
  • Scalable algorithms

Further target application areas

  • Education
  • Mobile and Sensor devices
  • Security
  • Transportation

Submission directions

KDD is a dual track conference hosting both a Research track and an Applied Data Science track. Due to the large number of submissions, papers submitted to the Research track will not be considered for publication in the Applied Data Science track and vice versa. Authors are encouraged to read the track descriptions carefully and to choose an appropriate track for their submissions.

Following KDD conference tradition, reviews are not double-blind, and author names and affiliations should be listed. Submissions are limited to a total of 9 (nine) pages, including all content and references, and must be in PDF format and formatted according to the new Standard ACM Conference Proceedings Template. For LaTeX users: unzip, make, and use sample-sigconf.tex as a template.

Additional information about formatting and style files is available online at: Papers that do not meet the formatting requirements will be rejected without review.

In addition, authors can provide an optional two (2) page supplement at the end of their submitted paper (it needs to be in the same PDF file and start at page 10) focused on reproducibility (see reproducibility section for more details)*.

Website for submissions:

Important policies


Submitted papers will be assessed based on their novelty, technical quality, potential impact, insightfulness, depth, clarity, and reproducibility. Authors are strongly encouraged to make their code and data publicly available when possible . Algorithms and resources used in a paper should be described as completely as possible to allow reproducibility. This includes experimental methodology, empirical evaluations, and results. The reproducibility factor will play an important role in the assessment of each submission.

*Important Note: To encourage reproducibility of the results presented in KDD, only papers that include a supplement (up to two pages as described in the submission directions) aiming to provide reproducibility-related information will be considered for the best paper awards. This supplement can only be used to include (i) information necessary for reproducing the experimental results, insights, or conclusions reported in the paper (e.g., various algorithmic and model parameters and configurations, hyper-parameter search spaces, details related to dataset filtering and train/test splits, software versions, detailed hardware configuration, etc.), and (ii) any implementation, pseudo-code, or proofs that due to space limitations, could not be included in the main nine-page manuscript, but that help in reproducibility.


Every person named as the author of a paper must have contributed substantially both to the work described in the paper and to the writing of the paper. Every listed author must take responsibility for the entire content of a paper. Persons who do not meet these requirements may be acknowledged, but should not be listed as authors. Post-submission changes to the author list are not allowed.

Dual submissions

Submitted papers must describe work that is substantively different from work that has already been published, or accepted for publication, or submitted in parallel to other conferences or journals.

However, there are several exceptions to this rule.

  1. Submission is permitted for a shorter version of a paper submitted to a journal, but not yet published. Authors must declare such dual-submissions on the submission form and must ensure that the journal in question allows concurrent submissions to conferences.
  2. Submissions are permitted for papers presented or to be presented at seminars, conferences or workshops without proceedings.
  3. Submissions are permitted for papers that have previously been made available only in the form of technical report with no peer reviews, in particular on arXiv.

Conflicts of interest

During the submission process, enter the email domains of all institutions with which you have an institutional conflict of interest. You have an institutional conflict of interest if you are currently employed or have been employed at this institution in the past three years, or you have extensively collaborated with this institution within the past three years. Authors are also required to identify all PC/SPC members with whom they have a conflict of interest, eg, advisor, student, colleague, or coauthor in the last five years.


For each accepted paper, at least one author must attend the conference and present the paper. Authors of all accepted papers must prepare a final version for publication, a poster, and a three-minute short video presentation.


Accepted papers will be published in the conference proceedings by ACM and also appear in the ACM Digital Library. The rights retained by authors who transfer copyright to ACM can be found here .

AUTHORS TAKE NOTE: The official publication date is the date the proceedings are made available in the ACM Digital Library. This date for KDD 2019 is on or after July 1st, 2019. The official publication date affects the deadline for any patent filings related to published work.

For any questions, please contact

How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: