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ABSTRACT

This paper uses an explainable machine-learning method to address
the challenge of diagnosing bloodstream infections (BSI), infectious
diseases caused by bacterial or fungal microorganisms in the blood.
These infections can lead to sepsis, a life-threatening condition, and
cause increased mortality, longer hospital stays, and higher treat-
ment costs. Central venous catheters, used extensively in intensive
care units (ICU) for administering medication, fluids, and nutrition,
are a primary source of BSIL Early detection of BSI is crucial for
improved clinical outcomes; however, current methods using blood
cultures have limitations such as long processing time, risk of con-
tamination, and low negative predictive value. Machine learning
models have been developed for early BSI detection to overcome
these challenges. However, the complexity of these models often
limits their utility, as their decision-making process is difficult to
explain and hence hard to trust in clinical settings. To this end, we
explore the concept of explainable artificial intelligence (AI) and
its potential to diagnose BSI. We further present our results from
applying a technique known as local interpretable model-agnostic
explanations (LIME) to our best predictive models, suggesting a
potential path towards creating trustworthy and understandable
machine learning models for BSI detection.

CCS CONCEPTS

« Computing methodologies — Neural networks; Supervised
learning by classification; Cross-validation; « Applied comput-
ing — Health informatics.
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1 INTRODUCTION

Bloodstream infections are infectious diseases defined by the pres-
ence of viable bacterial or fungal microorganisms in the blood-
stream, later demonstrated by the positivity of one or more blood
cultures [14]. The body’s response to bloodstream infection can
lead to sepsis, which is a leading cause of global mortality [5]. Even
for patients who do not experience sepsis, bloodstream infection
is associated with increased mortality, longer hospital stays, and
higher treatment costs [9]. Patients in the intensive care unit are at
especially high risk of BSI because of the frequent need for catheters
and their already critical condition [7].

In the ICU setting, physicians order blood cultures based on their
analysis of many aspects of a patient’s physiological condition, in-
cluding lab results, body temperature, heart rate, and many other
features. Early detection of bloodstream infection and adequate
antimicrobial treatment is associated with improved clinical out-
comes, especially for patients at risk for septic shock [4]. However,
blood cultures take several days to process, are subject to the risk
of contamination, and often have a low negative predictive value,
making bloodstream infection difficult to identify clinically. To ad-
dress this issue, researchers have developed predictive models that
use machine learning to detect bloodstream infections.

Studies have demonstrated promising results predicting the pres-
ence of bloodstream infection [6] and identifying pathological sig-
natures of infection [15]. However, many state-of-the-art models
developed are so complex that their decision-making architecture
cannot be explained. This lack of transparency diminishes clini-
cian trust in the reliability of such models and discourages their
use in high-risk settings. In the field of machine learning, explain-
ability refers to the ability of a model to justify its outcomes and
assist users in rationalizing its predictions [11]. Put another way,
explainability is the ability to explain a model’s behavior in hu-
man terms. Explainability is distinct from, but closely related to,
interpretability, which refers to the ability to see and understand
the inner mechanics of a model [13]. In many cases, some level of
explainability can be achieved even if a machine learning model is
not fully interpretable [10].

2 RELATED WORK

Many of the most powerful predictive models are so-called “black
box” models that are neither interpretable nor explainable. In clin-
ical applications, lack of explainability is a barrier to trust, and
therefore to model adoption. To use a model in a decision-making
process that affects their patients’ health, clinicians must be able
to trust, understand, and justify its predictions to themselves, their
colleagues, and their patients [1]. As additional regulations are
passed into law, explainability is also increasingly important for
legal compliance. The General Data Protection Regulation (GDPR),
a comprehensive law on data privacy in the European Union, re-
quires companies that use algorithmic decision-making tools to
provide meaningful information about the process involved [2].

2.1 Characteristics of Explainability

As machine learning continues to become more widespread in high-
risk areas, demand for explainable models will continue to grow.
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Before discussing what explainability means in the clinical context,
we will break down the dimensions of explainable Al in its timing,
scope, specificity, and target audience.

Timing. Methods for explainability can be categorized into
three distinct groups based on when they aim to generate an expla-
nation. Pre-training explainability attempts to create explainability
before data is input into a model. This entails understanding and de-
scribing the data used to train a model, based on the understanding
that the output of a model is largely dependent on the data it trains
on. Pre-training explainability includes exploratory data analysis
and feature engineering using methods such as imputation, feature
splitting, and variable transformations. This type of explainabil-
ity is generally embedded into the modeling process. Pre-training
methods can also be used to identify and mitigate pre-training bias
but are less able to explain model output. The second category of
explainability methods, in-training (ante-hoc) explainability, refer
to methods that integrate explainability into the structure of the
model itself. Finally, post-training (post-hoc) explainability meth-
ods extract explanations to describe a trained model or prediction

[12].

Scope. Explanations can generally apply to one of two scales:
local or global. Local explanations apply to a specific sample or pre-
diction, while global explanations are valid for a set of samples, or
for the whole data set [12]. Local explanations are common in mod-
els in which predictions are made sample by sample, and knowledge
is not stored from one prediction to the next. Global explanations
are most common in models with long-term dependencies, in which
knowledge is shared from one sample to another.

Specificity. Model-specific explainability methods are applica-
ble to a certain type or architecture of model, while model-agnostic
techniques are those that can be applied to any machine learn-
ing model. Pre-training techniques are generally model agnostic,
while ante-hoc and post-hoc methods are often, but not exclusively,
model-specific.

Target Audience. While explainable methods can be designed
for a variety of audiences, the most common distinction is that
between the developer, who is generally interested in technical
insights that can explain an entire model, and the user, who is
primarily concerned with context-driven insights that explain how
a specific insight was generated. In addition to varying in scope,
explainable methods designed for different audiences must align
with the technical experience of the target audience [12].

2.2 Our Approach

Studies on explainability in clinical practice have found that clin-
icians view explainability as a means of justifying their decision-
making in the context of the model’s prediction [11]. Clinicians
want to understand the features that lead to the model’s decision -
referred to in machine learning as feature importance - so that they
can evaluate how the prediction aligns with the current standard of
care. While metrics such as accuracy, specificity, and sensitivity are
critically important, clinicians are willing to accept inaccurate pre-
dictions if they can understand why and in which contexts a model
falls short. Real-world application - that is, successful prediction

Table 1: Positive, negative, and no blood culture patients

total  negative no-culture positive

No. of patients 50,216 13,676 34,998 1,542
Percentage of total 100%  27.2% 69.7% 3.07%

with real patients - is important in promoting continued use of pre-
dictive models, demonstrating the role that user interaction plays
in model trustworthiness. Returning to the elements of explainable
Al described above, in the context of BSI, local explanations are
preferred over global ones, as clinicians are most concerned with
explaining the output of the model for a specific patient. Because
the target audience is the clinician rather than the developer, the
focus is on a context-driven explanation rather than a technical one.
With these factors in mind, we implemented LIME, an algorithm
that provides local, model-agnostic post-hoc explainability that
clinicians can understand [8].

3 METHODS

In developing models to predict BSL, we built and tested a variety of
deep neural networks, including recurrent neural networks (RNNs),
a class of neural networks designed to capture long-term dependen-
cies, and convolutional neural networks (CNNs), a class of neural
networks designed for image processing that use convolutional
layers to capture patterns in data. All of our models take as input
multi-variate time series data from the hours leading up to a blood
culture and output a prediction probability representing whether
the patient is positive or negative for bloodstream infection. By
comparing the prediction to the ground-truth label from a patient’s
blood culture, our models can recognize and learn from patterns
in the data. Ground truth labels also allow us to evaluate model
performance on validation and test data.

3.1 Data

We used multivariate time series data sourced from the University of
Virginia (UVA) Electronic Health Record. Our data includes 50,216
unique ICU patients, 363,552 unique time steps, and 38 clinically
relevant features, including both lab results and vital signs. We
defined an "episode" of bloodstream infection to include hourly data
in the 48-hour window leading up to a blood culture. In addition
to patients with positive and negative blood cultures, we included
random 48-hour periods from patients who did not have a blood
culture drawn. These patients served as controls and were labeled
as negative, ensuring that the model’s output was not conditional
on the presence of a blood culture. Our response variable had two
classes: a positive class containing patients with positive blood
cultures, and a negative class containing patients with negative
blood cultures as well as patients who did not have a blood culture
drawn. See Table 1 for a breakdown of the count and percentages
of positive, negative, and no blood culture patients in our dataset.

After obtaining the raw data in CSV files, we developed a prepro-
cessing pipeline to convert it into episodes of bloodstream infection.
Before doing so, we removed any patients whose blood culture
contained a common contaminant. Our processing pipeline then



Table 2: Performance statistics for best CNN and GRU models

Precision Recall AUROC

CNN 0.599  0.503 0.821
GRU 0.559  0.251 0.744

split data into episodes, combined them into one multidimensional
dataset, and converted the result into TensorFlow Dataset format.

We used outlier cutoff values from a study by Zimmet et al [16].
Rather than imputing missing data, we masked missing values so
that the model did not use them as input. This decision was based on
the assumption that missing values in our dataset are not missing
at random. If a patient is missing lab results for a given lab test,
for example, it suggests that the clinician believed the test was
unnecessary based on the patient’s condition at the time.

We shuffled the combined dataset and split it into training, test,
and validation sets with a 70:20:10 ratio. We used a batch size
of 64 episodes for model training, testing, and validation. Cutoff
values for outliers, alternative feature names, and human-readable
documentation were stored in a separate file.

3.2 Adaptation of LIME

Local interpretable model-agnostic explanations (LIME) is a model-
agnostic method that provides local explainability [8]. As a pertur-
bation based approach, LIME works by perturbing data points and
feeding them into the model. The model outputs are then weighed as
a function of proximity to the original data. A simple, interpretable
model, such as linear regression or a decision tree, is trained on
the perturbed data; this model can then be interpreted, providing
insight into the black box model.

4 EXPERIMENTAL RESULTS

We achieved our best model performance with convolution neural
networks. Although CNNs were designed to process image data,
they have also performed well on multivariate time series classifica-
tion tasks. CNNs pass a weighted filter called a convolutional layer
over the input data and then use a pooling layer to combine the
output of the filters into encodings. By using multiple convolutional
layers on top of each other, CNNs can recognize complex patterns
in data.

We also experimented with gated recurrent networks (GRUs) [3],
a form of recurrent neural network that uses a gating mechanism
to mitigate the vanishing gradient problem that occurs in standard
RNNs. By maintaining hidden states and allowing previous outputs
to be used as inputs, RNNs can capture long-term dependencies in
time series data.

4.1 Model Performance

From an explainability perspective, RNNs are intuitively favorable
given the time series nature of our data. RNNs are designed to
model sequential information. In contrast, CNNs are designed to
process visual information. Because CNNs interpret data as images,
columns of data next to each other are interpreted to be similar to
each other. While this is true in the case of image pixels, the order of
columns in time series data is not generally ordered this way, unless
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Figure 1: LIME output for a positive patient. Our CNN cor-
rectly predicted positive with probability of 1.0.

it has been feature engineered to do so. CNNs can offer powerful
performance, but RNNs offer the potential for more explainability
in the context of time series data. We implemented LIME on our
best GRU and CNN models. Model statistics are shown in Table
2, and results from LIME are discussed in detail in the following
section.

4.2 Clinical Explainability

Figure 1 shows the output of LIME for a patient that our CNN
correctly predicted as positive. The features listed are ranked in
order of importance (i.e. how important they were to the model’s
decision); the corresponding values of each feature are listed in the
value column. For example, the first row of the chart lists pc02_t_30
and 29.30, indicating that the most important feature to the model’s
prediction was partial pressure of carbon dioxide at time step 30,
which had a value of 29.30. While LIME can be run on any number
of features, the output in this example has been limited to the five
features to improve readability and to isolate the most important
features.

The features on the "Positive" side of the chart contribute to a
prediction that the patient is positive, while the features on the
"NOT Positive" side contribute to a negative prediction. In this
case, all five of the most important features indicated a positive
prediction; the model predicted correctly positive with a probability
of 1.0. When provided in conjunction with the model’s prediction,
this type of output allows doctors to better understand what went
into the model’s decisions. By isolating the most important features
and their values, it also allows doctors to evaluate whether the
model may be picking up on a specific condition that the patient is
already known to have (ex: kidney failure, elevated blood pressure,
etc.) or a bloodstream infection. Ultimately, this information allows
for improved trust in the model, better insight into when the model
may be incorrect, and better clinical decision-making.

Figure 2 compares the output of LIME from our CNN and GRU
on the same positive patient. While the outputs share many of the
same features (dbp, bicarbonate, and tronponin), the list and order
of features is different, indicating that the models made their predic-
tions differently. Most notably, the CNN correctly predicted positive
with a probability of 1.0, while the GRU predicted positive with
a probability of 0.43. Given the performance difference between
these models, it is not surprising that the CNN had a more accurate
prediction.
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(a) LIME output for our CNN on another positive patient. The
model correctly predicted positive, with a probability of 1.0.

NOT Positive Positive F Val
-1.00 < bicarbonate_t-... eature ue
0.06
tl .00 < bicarbonate_t-... bicarbonate_t-47
0.06 .
1.00 < dbp_t-l 6<= .. bicarbonate_t-57
floos dbp_t-16
-1.00 < bun_t-6 <= 10.00
0.01 bun_t-6
-1.00 < bicarbonate_t-...
0.01 bicarbonate_t-46

-1.00 <spo2_t-10 <= ...
0.01

spo2_t-10

-1.00 < blcarbonate_:)-(.).i bicarbonate_t-50

-1.00 < bicarbonate_t-...
0.01

bicarbonate_t-48

-1.00 < bicarbonate_t-...,
0.00)

-1.00 < dbp_t-15 <= ... dbp_t-15
0.00l

bicarbonate_t-58
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incorrectly predicted negative, with a positive probability of 0.43.

Figure 2: LIME output for another positive patient.

4.3 Missing Data

Missing data is a serious concern in our dataset. Regardless of how
good a model is, it will perform poorly if there is not sufficient data
for a given patient. The same is true of LIME.

Figure 3 displays LIME output for our CNN from yet another
positive patient. All of the values in the chart are -1, indicating that
they are missing and have been masked. LIME interprets the mask-
ing as actual values and is unable to provide a relevant prediction.
In a clinical setting, predictive model would only be used if suffi-
cient data on the patient was present. Nonetheless, this feedback
can be valuable: seeing missing values listed as the most important
values to the prediction suggests that the model does not have
sufficient data and that the prediction is unreliable. Ultimately, it
underscores the importance of data quality to model performance
and explanability.

5 CONCLUSION

Building on existing research, our work demonstrates that deep
learning has the potential to predict bloodstream infection in at-risk
ICU patients correctly. Moreover, post-hoc explainability methods
such as LIME can provide local explainability, giving clinicians
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Figure 3: LIME output for a positive patient with lots of miss-
ing data. Our CNN incorrectly predicted negative, with a
positive probability of only 0.07.

additional information about why a prediction was made, which
physiological features the model focuses on, and whether the model
can be trusted.
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A LIST OF FEATURES

Feature abbreviations and corresponding names:

age: Age

albumin: Albumin

alp: Alkaline Phosphate

alt: Alanine Transaminase

ast: Aspartame Aminotransferase
bicarbonate: Bicarbonate

bun: Blood Urea Nitrogen
calcium: Calcium

chloride: Chloride

co2: Carbon Dioxide

creatinine: Creatinine

dbp: Diastolic Blood Pressure
fio2_pct: Fraction of Inspired Oxygen
glucose: Glucose

hematocrit: Hematocrit
hemoglobin: Hemoglobin
heart_rate: Heart Rate
lactic_acid: Lactic Acid

magnesium: Magnesium

02_flow: Oxygen Flow Rate

pco2: Partial Pressure of Carbon Dioxide
peep: Positive End-expiratory Pressure
ph_arterial: Arterial Blood Gas
phosphorus: Phosphorus

po2: Partial Pressure of Oxygen
potassium: Potassium

protime_inr: Prothrombin Time

ptt: Partial Thromboplastin Time
platelet_count: Platelet Count
resp_rate: Respiratory Rate

sbp: Systolic Blood Pressure

sodium: Sodium

spo2: Oxygen Saturation

temp: Core Body Temperature
total_bilirubin: Total Bilirubin
total_protein: Total Protein

troponin: Troponin

wbc: White Blood Cell Count
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