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ABSTRACT
Performing a thorough literature review is among the most cum-

bersome tasks when carrying out a research project. Students often

invest significant amounts of time and effort in combing through

scientific texts to uncover solutions to their inquiries, which can re-

sult in a waste of valuable resources. We aim to create a system that

enables students to quickly and efficiently locate the most pertinent

research paper and its corresponding section for their inquiries.

Our pipeline takes as input research papers and queries from the

user and, if possible, returns the answers and the most relevant

research paper. We break down our task into two primary subtasks:

paragraph retrieval and question answering. By using a bi-encoder

and cross-encoder pipeline, we extract the most relevant passages

from the input scientific texts that corresponds to the user’s query

for the paragraph retrieval subtask. Once we have retrieved the

relevant paragraph, our question answering model provides the

user with the answer to their query and the corresponding research

paper, if the answer is present in the input papers. We fine-tune

the pre-trained models on data obtained from various material

science research papers and by performing webscraping to create

our model that is tailored specifically for material science scien-

tific text. The code for our final pipeline can be found at https:

//github.com/anaghasavit/material-science-extractive-QA.git
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1 INTRODUCTION
Carrying out literature review is an incredibly time-consuming

and laborious task. It frequently results in the expenditure of sig-

nificant resources in sifting through irrelevant texts in search of

answers to queries. Information extraction is especially important

in material science as it is a multidisciplinary field. Researchers

need to collect information from a wide variety of sources, such

as research papers, journals, and patents. Moreover, the field of

material science consists of a diverse range of material categories

and properties, resulting in highly heterogeneous and extensive

data. Text data extraction methods can be used to automatically

identify and extract key information from these sources, such as

material properties, experimental methods, and results. This can

save researchers substantial time so that they can focus on analyz-

ing and interpreting the information, rather than having to search

for it themselves.

Several efforts have been made to automate the process of sci-

entific text data extraction in the material science domain. Re-

searchers have made use of machine learning and NLP to extract

information and develop predictive models for zeolite synthesis[1],

adapted named entity recognition, relation extraction, and knowl-

edge graphs to retrieve information from polymer, general material

science literature[2, 3], and even fine-tuned the BERT architecture

on a large corpus of materials science publications for extracting

information from materials science text [4]. However as outlined in

[5, 6], there is still a need for more developed and accurate domain-

specific models for information extraction from material science

publications.

The objective of our research is to bridge this gap through the

development of a highly efficient and accurate pipeline for material

science domain-specific question answering. We divide our task

into two major subtasks: paragraph retrieval followed by question

answering. Paragraph retrieval refers to the extraction of the most

relevant paragraph for the user’s query while question answering

refers to the extraction of the answer from that particular para-

graph. The final pipeline consists of a bi-encoder+cross-encoder

for paragraph retrieval and a QA model for question answering.

This paper is organized as follows: part 2 outlines the overall

pipeline; part 3 elaborates on the creation of a material science-

specific QA dataset and the data augmentation methods used; parts

4 and 5 discuss the paragraph retrieval subtask, specifically the

bi-encoder and cross-encoder evaluation and fine-tuning; part 6

details the question answering subtask, the QA model evaluation

and fine-tuning; part 7 is the discussion of possible future work

along with the conclusion.

https://github.com/anaghasavit/material-science-extractive-QA.git
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2 PIPELINE

Figure 1: Flowchart of Overall pipeline

• The first step in the pipeline is to convert the input pdfs of re-

search papers into txt files and split these txt files paragraph

wise.

• The next step is to obtain the embeddings for all the para-

graphs and the query using the bi-encoder. The bi-encoder

then retrieves the top 15 passages for a given query, using se-

mantic search. This reduced subset of passages is propagated

to the cross-encoder.

• The top 15 passages obtained are re-ranked using a cross-

encoder model which predicts a score between 0 and 1 for

each passage. The top 5 passages with a relatively higher

score among the top 15 passages are obtained.

• In the answer extraction step the QAmodel applied to each of

these top 5 question-passage pairs, returns the answer from

each passage along with the associated confidence score.

• The answer with the highest confidence score among the 5

passages is returned. If all the scores are below a pre-defined

threshold, then "answer not possible" is returned.

3 DATA COLLECTION
Our dataset is created by a combination of manual and automated

efforts. It consists of a large corpus of rows containing context,

question, answer possible(binary values), answer text, answer start

character, and answer end character. The contexts are chosen from

highly esteemed material science research papers and journals and

by scraping material science-specific Wikipedia pages. The next

step is to create question-answer pairs for these contexts. Some of

the question-answer pairs are created manually. Additionally, we

also make use of an answer-aware question generation module in

order to generate question-answer pairs. It consists of two separate

modules: the first module identifies certain key phrases in the con-

texts, and the second module generates questions having these key

phrases as the answers. We use a sequence-to-sequence question

generator based on the pre-trained t5-base model [7] for setting up

this question generation system.

(a)

(b)

Figure 2: (a) Paragraph wise clustering of the embeddings of
the cluster centroids after projection to 2D space via PCA for
a subset of the dataset (b) Distribution of answer lengths

3.1 Data Augmentation
We use three different strategies to augment our dataset. Synonym

substitution is one of the methods used. First, the words in ques-

tion answer pairs that are adjectives are identified. This is done by

using the nltk (natural language tool kit) library in python. Once

the adjectives are identified, they are replaced with synonyms ob-

tained from the same library. The meaning of the text is maintained

while adding variation to the dataset. With this new dataset, our

model will be more robust, generalizable, and better able to handle

deviations.

The second approach used is back translation. In this approach,

the query is translated into an intermediate language, French in

our case, and then translated back into English. This process of

back translation often results in rephrasing of the query once it

is translated back into the source language. In the case where the

back translated query is a duplicate of the original, it is dropped.

The rephrased queries are added to the dataset, helping to reduce

overfitting and also lending it several of the same benefits as syn-

onym substitution. We make use of the MarianMT model [8] for

neural machine translation and back translation.

Finally, we identified that our dataset contains many more ques-

tions for which an answer is possible (TRUE questions) than it does

questions for which an answer is impossible (FALSE questions). In
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order to balance out our dataset we carry out negative sampling

using the results of the bi-encoder. The exact procedure is detailed

in the next section.

Figure 3: Distribution of TRUE and FALSE questions before
and after negative sampling

4 BI-ENCODER
Ranking the passages based on literal matches between the query’s

words and the document’s words, also called lexical search, is not

robust to different spellings, acronyms, or synonyms. Hence, in our

pipeline, the given passages and the query are converted into vector

representations in semantic space. Semantic search (also known as

dense retrieval) retrieves the passage embeddings near the query

embeddings in this vector space. This measure of nearness can be

cosine similarity, Euclidean distance, or dot product.

To obtain embeddings for both the passages and the query, we

make use of a bi-encoder model that utilizes BERT [9] as an encoder.

The bi-encoder model architecture pools the token embeddings

generated by BERT to create new sentence embeddings. With the

bi-encoder, we can retrieve the top 15 relevant passages for a query,

based on the dot-product similarity measure. The working of the

bi-encoder model is depicted in Figure 4.

Figure 4: Bi-encoder working

In order to determine the best model, we evaluate the zero-shot

performance of multiple different pre-trained bi-encoder models

[10, 11, 12, 13] on our dataset. These pre-trained models are publicly

available at https://www.sbert.net/.

The SBERT [14] models are evaluated on the basis of two criteria:

• Mean Reciprocal Rank (MRR): MRR corresponds to the re-

ciprocal of the rank of the ground truth passage in the top K

retrieved passages.

• Hits@K: Hits@K indicate whether the top K passages con-

tain the ground truth passage or not.

The zero-shot performance is evaluated considering three different

values of K (5/10/15). We also analyze the memory requirements

of the models based on its parameters and buffers. The results are

detailed in Table 1.

On the basis of the results, it is clear that the overall best per-

formance considering MRR and Hits@K is shown by the msmarco-

distilbert-base-tas-b model, while its memory requirements re-

mained similar to the others. So, we decided to go ahead with this

model as our bi-encoder. Since the zero-shot performance of the

model is already pretty good and since fine-tuning the bi-encoder is

computationally expensive, we decided not to fine-tune this model

further on our dataset.

Since there are more TRUE questions than FALSE questions as

specified earlier, we need to balance our dataset. To accomplish

this, the bi-encoder model is used to generate negative samples that

are added to the original dataset. The bi-encoder model retrieves

the top 15 passages for each query in the training set, and for each

query, the top passage that is not the correct answer is selected as

the negative sample. By doing this, we generate additional negative

samples and augment our dataset.

5 CROSS-ENCODER
The top 15 passages returned by the bi-encoder are now input into

the cross-encoder model. The cross-encoder uses both the query

and passage simultaneously, unlike the bi-encoder model, which

takes queries and passages independently as input. This makes its

evaluation and training more complex.

The cross-encoder combines the input and output sequences into

a single sequence, usually with a special separator token between

them, which is then encoded. Next, a similarity score is computed by

passing the encoded vector representation through fully connected

layers. On the basis of the similarity scores obtained from the cross-

encoder, the 15 passages are re-ranked, and only the top 5 passages

with the highest scores are propagated ahead to the QA model.

Figure 5 depicts the working of the model.

Figure 5: Cross-encoder working

https://www.sbert.net/
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· Model Name MRR@5 MRR@10 MRR@15 Hits@5 (%) Hits@10 (%) Hits@15 Memory (MB)

msmarco-distilbert-base-tas-b 0.90808 0.91515 0.91565 98.181 98.181 98.787 192.423

all-mpnet-base-v2 0.77454 0.77768 0.77650 90.303 94.545 96.969 192.421

all-distilroberta-v1 0.84151 0.84727 0.84821 92.121 96.969 98.181 192.421

all-MiniLM-L12-v2 0.76545 0.76555 0.76795 90.303 92.727 94.545 96.210

multi-qa-distilbert-cos-v1 0.88181 0.88646 0.88646 98.181 98.787 98.787 192.421

Table 1: Comparison of zero-shot bi-encoder models

Model name Hits@1 Hits@2 Hits@3 Hits@4 Hits@5 MRR Inference time per query (s) Memory

ms-marco-TinyBERT-L-2-v2 0.83529 0.90588 0.91764 0.92941 0.93333 0.87 0.12 16.739

ms-marco-Mini-L-2-v2 0.82745 0.89019 0.90588 0.92941 0.93333 0.87 0.59 59.577

ms-marco-Mini-LM-L-4-v2 0.84705 0.90980 0.92156 0.92941 0.93333 0.88 1.21 73.115

ms-marco-MiniLM-L-6-v2 0.85490 0.90588 0.91372 0.92941 0.93333 0.88 1.78 86.653

ms-marco-MiniLM-L-12-v2 0.85490 0.89803 0.92540 0.92940 0.93333 0.88 3.44 127.268

Table 2: Comparison of zero-shot cross-encoder models

Model name Hits@1 Hits@2 Hits@3 Hits@4 Hits@5 MRR Inference time per query (s) Memory

ms-marco-TinyBERT-L-2-v2 0.85490 0.91372 0.93333 0.93333 0.93333 0.89 0.12 16.739

Table 3: Trained cross-encoder model

Similar to the bi-encoder, we carry out zero-shot evaluations

of multiple cross-encoders in order to decide which model to use.

These models are publicly available at https://www.sbert.net/. We

compare the performance of these models on the basis of their MRR,

Hits@K, memory requirements as well as inference time per query.

The results are summarized in Table 2. Based on the results, it is

evident that the performance of the ms-marco-TinyBERT-L-2-v2

model is superior when considering trade-offs between perfor-

mance, model size, and inference time. Hence, we decide to use this

model in our pipeline.

To train the cross encoder, a query, positive passage (ground

truth), and negative passages are required. There are two ways for

obtaining the negative passages for this task. The naive approach is

to randomly sample passages other than the ground truth passage

and label them as negative passages. The approach that we used in

our pipeline involved the mining of hard negatives. In this approach,

we first let the bi-encoder retrieve the top K passages from the

entire set of passages. Among these K passages, we take the top N

passages as the negative passages. In this way, the cross-encoder

learns to differentiate between two highly semantically similar

passages. Thus, we use the ground truth as the positive passage

and the top 4 (excluding the ground truth) passages out of the 15

passages retrieved from msmarco-distilbert-base-tas-b as the hard

negatives for training the cross-encoder.

The model is trained on our dataset using Localized Contrastive

Estimation [15] (LCE) loss. Say q is the query and d represents the

set of documents retrieved for the query q. Here, 𝑑+ represents

the ground truth document for query q and the score is the scalar

output obtained from the cross-encoder. The loss is given by the

following formula:

LLCE = − log

(
exp

(
score(𝑞, 𝑑+)

)∑
𝑖 exp

(
score(𝑞, 𝑑 (𝑖 ) )

) ) (1)

The performance of the model after training is depicted in Table 3.

6 QA MODEL
The final step in the pipeline is to extract the answer string from

each of the top 5 passages obtained from the cross-encoder. We use

pre-trained transformer-based models [16, 17] for this task. These

models consist of language models pre-trained with the masked

language modelling objective with a classification layer on top.

They first take the input passage and query and convert it into

embeddings. They then use a token classification approach to iden-

tify the answer to the query. The model predicts the probability

of each token in the context being the start and end of the answer.

The start and end tokens with the highest probabilities are selected

as the answer span, which is extracted from the passage and then

returned as the output along with a confidence score. The answer

string, passage, and corresponding paper with the highest confi-

dence score is returned to the user, provided that its score is above

a pre-defined threshold. If the highest score is below this threshold,

"answer not possible" is returned to the user.

We evaluate the zero-shot performance of multiple pre-trained

QA models on the basis of the following metrics:

• F1 Score: The F1 score is the harmonic mean of precision

and recall.

𝐹1 =
2 · precision · recall
precision + recall

(2)

https://www.sbert.net/
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Model name F1 Score Inference time per question on CPU (in s)

distilbert-base-cased-distilled-squad 0.54045 0.38

electra-small 0.51303 0.01

bert-large-uncased-whole-word-masking-squad 0.54782 >1.5

roberta-base-squad2 0.55513 0.85

minilm-uncased-squad2 0.49726 0.20

tinyroberta-squad2 0.48801 0.31

Table 4: Comparison of zero-shot QA models

Model name F1 Score Inference time per question on CPU (in s)

roberta-base-squad2 0.80510 0.85

Table 5: Trained QA model

In this context, precision is defined as the ratio of the num-

ber of shared words to the total number of words in the

prediction, and recall is defined as the ratio of the number

of shared words to the total number of words in the ground

truth.

• Exact Match: Exact match is defined as the number of exact

matches between ground truth answers and predictions.

The results of the zero-shot evaluations are detailed in Table 4.

Considering trade-offs in F1 score and inference time, we decide

to fine-tune the roberta-base-squad2 model for our purpose. The

model performance after training is depicted in Table 5.

7 DISCUSSION AND CONCLUSION
The final pipeline consists of the following steps in our solution: Ini-

tially, we retrieve the top 15 passages using bi-encoder embeddings.

After this, we retrieve the top 5 passages after re-ranking using

the fine-tuned cross-encoder. On these 5 passages, the roberta-base

model is applied individually to retrieve the answers and estimate

the confidence scores. We then chose the answer string correspond-

ing to the highest obtained score as our final answer string, its

passage ID as the final passage ID, and the corresponding paper.

This holds only if the best score is above the pre-defined threshold,

if this fails, it implies that none of the passages answer the query

and thus we return -1 as the passage ID and "answer not possible"

as the answer.

In the future, we may explore implementation of additional fea-

tures such as query reuse, and model quantization to speed up

inference. We may also include a table information extraction step

in the pipeline, to improve the results in question answering from

tables. The models in our pipeline have been fine-tuned on a mate-

rial science corpus however, it is possible to extend its use to other

domains as well. This makes our pipeline a versatile tool that can be

adapted to various fields, with the potential to improve information

retrieval and answer extraction for a range of subjects.
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