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ABSTRACT

Food composition databases (FCDBs) have presented an integral
part of food and nutritional research, dietary assessment, and re-
lated (e.g., health, environmental) fields. However, as with other
scientific disciplines, the domain of nutrition and food composition
is no exception to the problem of missing data. This can signif-
icantly reduce the accuracy and reliability of analyses based on
food composition, as it introduces an element of ambiguity and
can, therefore, limit their usage. To address this issue, researchers
have explored various methods for imputing missing data. The
easiest and most common approach to this problem is to calculate
the mean or median from available data in the same FCDB or to
borrow values from other FCDBs. However, such simple methods
may produce notable errors. In this paper, we investigate the use of
knowledge graph embedding models for borrowing and imputing
missing values in FCDB. We used the ComplEx model from the
Ampligraph library and results are very promising. By employing
the approach described in our paper, the model can capture the
underlying structure and relationships in the data, providing accu-
rate imputations even when there are missing values. Ultimately,
the use of the proposed technique could lead to more accurate and
reliable analyses in the field of nutritional research and dietary
monitoring.
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« Computing methodologies — Knowledge representation
and reasoning; Supervised learning; Machine learning ap-
proaches.
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1 INTRODUCTION

Food Composition Data (FCD) refers to detailed sets of information
that provide valuable insights into the nutritional components of
food, including nutrient values, energy content, and values of other
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elements like bio-actives, toxins etc. [5]. These data sets, accompa-
nied by metadata such as classifiers and descriptors, are organized
within Food Composition Databases (FCDBs). FCDBs serve as the
primary sources for Food and Nutrition Science, as well as for vari-
ous public health domains, the food industry, and clinical practices.

The quality of FCD within FCDBs varies due to the diverse
sources and methods employed to obtain the data [8, 14]. To iden-
tify and categorize the data, codes and references are used, giving
priority to specific data types and sources. The preferred approach
involves acquiring original analytic values from published litera-
ture or laboratory reports. Alternatively, estimated values derived
from similar foods, data calculated from recipes based on ingredient
nutrient contents, or borrowed values from other databases can be
used [2].

FCDBs differ not only in quality but also in quantity of data
and accompanying metadata, leading to certain limitations in their
usage. Incompatibility between databases, limited coverage of food
items and nutrients, errors in database use, and restrictions in
measuring food intake are among these limitations. However, the
most significant limitation is the incomplete coverage of foods
and nutrients, resulting in missing data within FCDBs. Addressing
missing data is crucial for maintaining the integrity of the database,
and different methods are employed, including ignoring the missing
data, imputing plausible estimated values [10], or utilizing model-
based techniques for calculation [9, 12, 13]. Borrowing data from
other databases or calculating mean/median values from similar
foods within the same FCDB are common approaches to resolving
missing data. However, these methods can be inaccurate due to the
inherent compositional variations in food samples, necessitating the
development of improved techniques for imputation and calculation
of missing FCD.

Our contribution: In this paper, we propose the utilization of
knowledge graph embeddings [3] for imputing missing values in
FCDBs. Several diverse approaches have been employed in attempts
to address this issue. However, the advancements in Graph Machine
Learning (GML) and its growing prominence have inspired us to
apply it to FCD. As we shall observe, by embedding relational
food data as a knowledge graph, we can uncover fundamental
connections between different foods that may remain undetectable
through other non-graph-based alternative methods.



Outline: The rest of this paper is organized as follows: In Sec-
tion 2 we present the related work on missing value imputation in
FCDBs. Section 3 describes the data used in our experiment and
provides an overview of knowledge graph embeddings and the
metrics used to evaluate their performance. In Section 4, we present
the results of our experiment. We begin by exploring the data to
identify any potential patterns, and then proceed to construct our
models and test their link prediction capability. Finally, in Section 5,
we discuss directions for future work.

Reproducibility: The code will be available after the review
process.

2 RELATED WORK

Addressing missing data in FCDBs has been an ongoing issue,
prompting research into potential solutions. Statistical approaches,
such as Null Hypothesis Testing, have also been explored to handle
missing data in FCDBs [12]. Evaluations of statistical methods for
missing values in FCDBs, conducted by Ispirova et al. [13], have
compared Non-Negative Matrix Factorization (NMF), Multiple Im-
putations by Chained Equations (MICE), Nonparametric Missing
Values Imputation using Random Forest and K-Nearest Neighbors
against mean or median value imputation [10]. Additionally, the
issue of missing data in FCDBs has been investigated by utiliz-
ing autoencoders, a deep learning algorithm, for imputing missing
values [9]. Autoencoders possess the capability to approximate val-
ues by acquiring a higher-level understanding of the input data.
Nevertheless, all the aforementioned studies face the challenge
of requiring a complete training dataset to develop an effective
predictive model. This limitation has served as a driving force to
convert the FCDB into a graph structure (use all available data) and
investigate the potential of knowledge graph-based techniques for
predicting missing values.

3 METHODS AND MATERIALS

In this section, we commence by providing an explanation of the
data used in our experiment, its original purpose, organization, and
the structure of a dataset created specifically for our study. Then
follows a description of the methods used in our research. Initially,
we provide a brief overview of knowledge graph embeddings and
then explain the evaluation metrics that we used to measure the
performance of our models.

3.1 Food composition data

At present, numerous international bodies, organizations, and proj-
ects are actively engaged in the field of food composition. One of
them is the OPKP (Odprta platforma za klini¢no prehrano, Open Plat-
form for Clinical Nutrition) [16], which is a Slovenian platform for
dietary assessment complying with the CEN Food standard. It was
primarily designed for patients, clinical dietitians, and other health-
care providers at the Pediatric Clinic and the Oncology Institute. It
serves as assistance in assessing patients’ dietary habits, creating
dietary plans, and designing menus throughout the treatment pro-
cess. In an extensive database (food lexicon), users of the platform
can search for food and dishes that they have consumed or intend to
consume and verify their compositional values. The project receives
funding from both the Ministry of Higher Education, Science and

Table 1: Format of our dataset. The values are presented in
grams per 100 g of the food item

Water Fat  Protein Sugar

Chickenegg | 7595 894 12940  0.70
Sheep milk 82.70  6.26 5.270 4.70
Chicken thigh | 69.24 12.61 17.006 0.00
Cherry 89.50  0.29 0.720 12.80

Technology and the European Regional Development Fund, and it is
overseen by the Jozef Stefan Institute (IJS). OPKP comprises a wide
range of foods from multiple countries, with a primary focus on
foods from Slovenia. For our research, we specifically utilized the
data from the Slovenian food database [15]. However, it is designed
to comply with any other FCDB following the CEN Food standard
and EuroFIR thesauri.

To make use of the data effectively, an initial step involved ex-
tracting the necessary information, specifically nutrient values for
each food item. Subsequently, the dataset was constructed as a re-
lational database, with each row representing a food item and each
column representing a nutrient. Overall, nearly 1,000 food items
and approximately 300 distinct nutrients were extracted. However,
the data suffered from significant incompleteness and disorgani-
zation. To ensure a complete and homogeneous database, without
missing values and multi-unit nutrients, a process of data clean-
ing and value conversion was conducted as a preparatory step for
further analysis. From the multitude of nutrients, 25 were chosen
based on criteria such as minimal missing values, significance in
Food and Nutrition Science, and maximal diversity. In the end, our
dataset consisted of 351 distinct food items, spanning somewhat
diverse food groups. The structure of the final dataset is illustrated
in Table 1.

3.2 Supervised learning on knowledge graphs

In this section, we present the details needed to understand the
methodologies used in our experiments.

For our experiment on imputing missing values in FCDBs, we
decided to use Ampligraph [6]. Ampligraph is a Python library
containing a suite of neural machine learning models for relational
learning, a branch of machine learning that deals with supervised
learning on knowledge graphs. A knowledge graph is a structured
representation of knowledge that captures relationships between
entities, concepts, or facts. It organizes information in the form
of nodes (entities) and edges (relationships) to create a graph-like
structure. Formally, a knowledge graph is a subset of the cross prod-
uct N X L X N, where N represents a set of nodes and L represents
a set of labels. Each member of this set is known as a triple. To
accommodate popular deep machine learning models that require
numerical inputs, symbolic or discrete structures within a knowl-
edge graph need to be converted into numerical representations.
This can be achieved by assigning a vector representation to each
node, enabling calculation of similarity between nodes based on
the difference between their corresponding vectors. These vectors,
associated with each node, are also referred to as knowledge graph



embeddings. The goal of knowledge graph embeddings is to encode
the structural and semantic information of the knowledge graph
in a way that facilitates various downstream tasks, such as link
prediction [18], entity classification, or relation extraction.

The mean reciprocal rank (MRR) score is a statistic measure
commonly used in information retrieval and ranking tasks [11]. It
evaluates any process that generates a list of possible responses
to queries, ordered by the probability of correctness. MRR score is
calculated by taking the average of the reciprocal ranks across a
set of queries or instances, as seen in Equation 1:

N
MRR=~ 'L
N R;

i=1

)

The reciprocal rank is the inverse of the rank R; at which the correct
answer or relevant item is found. A higher MRR value indicates
better performance, as it signifies that the correct answers are
consistently ranked higher among the options provided by the
model.

The Hits@n score is another widely used evaluation metric in
information retrieval that assesses the quality of predictions made
by a model. It checks whether the desired entities/relationships or
ground truth are present among the top-n ranked predictions. A
general formula to calculate Hits@N is:

number of hits at n

Hits@n = 2
@ number of total queries or test cases @

A higher Hits@n score indicates better performance, as it means a
larger proportion of the ground truth items are among the top-n
predictions.

4 EXPERIMENT AND RESULTS

In this section, we illustrate findings of our research. We start by
analyzing the selected food composition data to identify potential
similarities among food items. Following that, we evaluate the link
prediction capability of the knowledge graph derived from our FCD.

4.1 Exploratory data analysis

To identify potential similarities among food items, our initial task
was to define what it means for two foods to be considered similar.
Each food item in FCDBs can be represented as a vector, with each
component representing a specific nutrient value. By calculating
the cosine similarity between these vectors, one can determine
the degree of similarity or dissimilarity between food items based
on their nutritional composition. Cosine similarity is particularly
suitable for this task because it measures the cosine of the angle
between two vectors, disregarding their magnitudes. This property
is desirable when comparing food items since it focuses on the
relative proportions of nutrients rather than their absolute values.

To start off, we constructed a similarity graph, connecting only
those foods that exceeded a specified threshold of similarity. Ad-
ditionally, we colored foods from the same food group with the
same color. The observation of Figure 1 reveals that while there
are some highly similar food pairs, their number remains low. This
outcome is desirable because we want as diverse dataset as possible.
Notably, certain foods from distinct food groups are also connected,
indicating either the presence of erroneous data or that those foods

belong to different yet related food groups. Further examination
revealed that the latter scenario was predominantly true, and also
uncovered instances where some food items had been erroneously
assigned to incorrect food groups.

F

Figure 1: 3D drawing of a similarity graph with threshold
of 0.0005. Some of the food groups that can be observed are
meats (turquoise green and orange), fruits (light blue), and
vegetables (dark blue).

Next, we applied three widely recognized dimensionality reduc-
tion algorithms (i.e., MDS [19], PCA [7], and t-SNE [22]) to visualize
the data in a two-dimensional space, with the expectation of identi-
fying any distinct clusters. While MDS and PCA did not produce
any noticeable outcomes, t-SNE, on the contrary, delivered the de-
sired results. This can be partially explained, as FCDBs typically
involve complex and high-dimensional data. Therefore linear di-
mensionality reduction techniques like PCA may not capture the
intricate relationships present in the data, as they primarily focus
on capturing global structure. MDS, while capable of preserving
pairwise distances, may struggle to handle the nonlinear relation-
ships that exist within the database. On the other hand, t-SNE
excels in capturing both local and global structures by focusing on
preserving the neighborhood relationships between data points. It
performs well in revealing clusters, making it particularly suitable
for exploring and visualizing complex and non-linear relationships
within food composition databases.

As depicted in Figure 2 below, we can clearly observe distinct
clusters within our data. By conducting a closer analysis and asso-
ciating the appropriate food names with each node, we can map
each cluster to a naturally occurring food group. These four groups
are:

e Vegetables (dark blue, top left)

e Fruits (light blue, top right)

e Meats (red and orange, middle)

e Cheeses (light green, bottom right)

The final cluster, located on the right side, appears to lack homo-
geneity and compactness. This can be attributed to its composition,
as it consists of multiple smaller-sized food groups. As a result,
these groups are not tightly mapped together nor significantly dis-
tanced apart. Among the food groups identified within this cluster
are grains, pasta, rice, nuts, and more. It is worth noting that due to
the large number of food groups in our data and some incorrectly



assigned groups, it may appear that certain foods in this cluster
should be categorized differently. For instance, within this cluster,
we may observe light blue and red points, which primarily rep-
resent nuts and grain products rather than meats or vegetables.
Additionally, there is a cluster shaped like a banana at the bottom
of the figure, primarily consisting of dairy products. Therefore, it
is unsurprising that it is closely mapped to cheeses compared to
other foods.
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Figure 2: Visualization of the data using t-SNE, showing de-
tectable clusters. The dark blue cluster at the top left repre-
sents vegetables, while the light blue cluster to their right
represents fruits. Below them, the orange and red cluster
denote meats, and the light green cluster in the bottom right
corresponds to cheeses.

To determine whether our clustering results aligned with a more
scientific approach, we conducted KMedoids clustering [17] and
calculated the average silhouette score [20]. As depicted in Figure 3
below, the KMedoids procedure yielded similar clusters to those
we had previously discovered. Specifically, vegetables, fruits, and
meats were assigned to their respective distinct clusters. The or-
ange cluster, although encompassing several smaller food groups,
predominantly comprised nutritionally related foods such as grains
and pasta. Thus, it is unsurprising that these foods were allocated
to the same cluster rather than any other. Similarly, cheeses and
other dairy products (black) were naturally grouped together and
remained so even when using more medoids, whereas other clus-
ters dissolved. We computed the silhouette score for a range of k
values, from 2 to 10, and found that the score was highest for k
= 5, confirming our earlier conclusion. However, there was one
exception for k = 2, where the associated score was slightly better.
Upon analyzing the formed clusters, we observed that the first clus-
ter primarily consisted of fruits and vegetables, while the second
cluster included all other food items. Although this grouping can be
partially explained, the higher score alone did not provide sufficient
evidence to support the existence of only two distinct food groups
in our dataset.

The visualization of the clustered data.

The silhouette plot for the various clusters.
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Figure 3: KMedoids clustering with the silhouette plot.

4.2 Knowledge graph construction

After confirming the diversity of our data, ensuring that we have
a range of food items that are not overly similar, we proceeded to
construct a knowledge graph. The diversity of our data was crucial,
particularly because of the relatively small size of our dataset. With-
out adequate representation of all food groups, our link prediction
model might not effectively train on certain categories. Conse-
quently, the accuracy of predicting missing values for those specific
foods would likely be compromised.

Since all models in Ampligraph [1] require a knowledge graph
as input, our first step was to transform our relational database
into a graph format, specifically a list of 3-tuples. As numerical
values of nutrients cannot be directly represented as relationships
in a knowledge graph due to the finite number of relationships
allowed, we addressed this issue by discretizing the nutrient values.
By calculating the minimum and maximum values for each column,
we defined a finite number of classes that corresponded to equally
sized intervals of nutrient values. Consequently, each food item
would be associated with a nutrient through a relationship interval
if the interval included the actual nutrient value. For example, the
protein content of an egg, as shown in Table 1, would be represented
as a 3-tuple:

(Egg, contains between x and y, Protein)

Here x and y represent the bounds of the interval that contains the
value 12.94. By discretizing the data, we inevitably sacrifice some in-
formation. Our model will only know the interval that encompasses
the actual value, rather than the exact value itself. Increasing the
number of classes in our column division allows us to retain more
information about the data. However, this also leads to a larger
number of possible relationships, which can result in certain issues,
like creating a more complex knowledge graph. When generating
embeddings for such a graph, a large number of relationship types
can increase the model’s complexity, making it harder to learn
embeddings that are meaningful and easily interpretable. Addition-
ally, complex models are more susceptible to overfitting, where
the embeddings become too specific to the training data and fail
to generalize well. Hence, striking a balance between minimizing
information loss and obtaining better results becomes crucial. It
is important to emphasize that the division of the range between
the minimum and maximum values of each nutrient (column) into
equal intervals has only been done for illustrative purposes of the
methodology. The size of these intervals can be further determined
by domain experts and may vary.



Table 2: Evaluation metrics for our 3 models

|n=4 n=10 n=25

MRR 0.60 0.53  0.52
Hits@10 | 0.79 0.69  0.64
Hits@3 | 0.64 0.56  0.54
Hits@1 | 0.50 045 0.46

4.3 Imputing missing values via link prediction

Considering our scenario, the number of entities is not substan-
tial enough to accommodate too many distinct relationships. We
decided to build three different knowledge graphs with 4, 10, and
25 classes (relations) per column and compare their performances.
For generating knowledge graph embeddings [23], we utilized the
ComplEx model [21] with default values for hyperparameters from
the Ampligraph library. The ComplEx model represents entities and
relationships as complex-valued vectors in a latent space. By em-
ploying complex-valued tensor factorization, the model can capture
both symmetric and antisymmetric patterns in the data. Because
this model has shown promising performance in knowledge graph
completion tasks [4], which involve predicting missing relation-
ships, it was a suitable choice for our experiment.

To train and evaluate our models, we utilized the built-in func-
tions provided by Ampligraph and specifically designed for this
purpose. Following the standard practice in machine learning, we
initially split our dataset into training and test datasets, with sizes
of 8475 and 300 respectively. It is worth noting that, unlike in other
datasets, our data points relate to two entities that are linked to-
gether by some relationship. Therefore, it was necessary to ensure
that all entities were represented in both the training and test sets
by at least one triple. Hence, a random sampling approach for the
test set was not possible. To solve this problem, Ampligraph offers a
built-in function train_test_split_no_unseen, which takes care
of splitting the data. We used the evaluate_performance function
to compute ranks, which enabled us to determine two types of
evaluation metrics: MRR score and Hits@n score. The results of
the evaluation are presented in Table 2.

Based on the scores, it can be observed that our assumption
regarding more complex models yielding worse results appears
to be correct. The model with only four classes demonstrated the
best performance across all metrics. Although the results may seem
pessimistic, it is important to consider that judging the models
solely based on scores without accounting for how other state-
of-the-art models would perform on our limited dataset can be
misleading. It is worth noting that an MMR score between 0.5 and
0.6 may still be considered good in some cases. Regardless, this
motivated us to improve our models.

Although FCDBs contain food items and their nutrient values,
it is not uncommon to extract additional information from them.
One such metadata is knowing the food group to which a food item
belongs. To improve the models, we incorporated information about
food groups into our knowledge graph. This was accomplished by
adding 351 new 3-tuples, thereby increasing the size of our training
set, of the following form:

([Food item], belongs-to, [Food group])

Table 3: Evaluation metrics for our 3 improved models

|n=4 n=10 n=25

MRR 0.81 0.77  0.67
Hits@10 | 0.94 091 0.82
Hits@3 | 0.87 0.79 0.71
Hits@1 | 0.74 0.71  0.58

Table 4: Prediction of unseen data

Statement Rank Prob.

Camembert containts between 20 and 30 Fat 1 0.99
Camembert containts between 50 and 60 Fat 57 0.90

Camembert containts between 0 and 10 Fat 62 0.71
Duck meat belongs to poultry 18 0.99

Duck meat belongs to Sea fish 162 0.95

Duck meat belongs to Fruits 520 0.22

Having done that, we proceeded to conduct the same analysis as
with our previous models, and the outcomes were remarkable (see
Table 3). It is evident that both MRR and Hits@n significantly
improved across all three models. Once again, the model with the
fewest classes emerged as the top performer, but this time with
exceptionally high scores, which are universally regarded as superb.

Although scores such as MRR and Hits@n give us a general idea
on how well a model is performing, it is hard to interpret what
that means for imputing missing values. Therefore, it is beneficial
to see how our models perform on unseen data, specifically by
determining the probability of a previously unseen 3-tuple being
true. To accomplish this, we selected a few relations that were not
present in the training set. For making predictions, we utilized the
improved model with 10 classes per nutrient. Initially, we chose
three relations pertaining to the nutrient value of fat in Camembert
cheese, out of which only one was true. The results are presented
in Table 4. It is evident that the model predicted the correct re-
lation with a very high probability. Although it also assigned a
relatively high probability of 0.9 to the incorrect statement, this
doesn’t concern us significantly because, when imputing missing
values, our objective is to select the best prediction based on the
lowest rank. Furthermore, we evaluated the model’s performance
in predicting food groups. While this aspect may not usually be as-
sociated with missing values in FCDBs, it can still provide valuable
insights into specific food items. In this test, the model was tasked
with identifying the correct food group for duck meat. As before,
the true statement emerged as the clear winner. Additionally, the
model correctly recognized that duck meat is much more likely to
belong to the sea fish category than to fruits, further validating the
effectiveness of knowledge graph embeddings.

It is common for real-world data to exhibit varying levels of noise
and variations. Our dataset was no exception, as observed during
the exploration step. Hence, to conclude the evaluation process,
there was one final step that was necessary to be undertaken. To
demonstrate the robustness of our models against minor pertur-
bations or outliers, it was essential to evaluate the stability of our



Table 5: Results of the robustness analysis

Iteration | MRR Hits@10 Hits@3 Hits@1
First 0.71 0.82 072  0.65
Second | 0.70 0.81 072  0.63
Third | 0.70 0.82 072  0.64
Fourth | 0.72 0.82 076  0.66
Fifth | 0.72 0.86 0.73  0.66

models when exposed to variations in the input data. To accom-
plish this, we carefully selected 12 of the most significant macro
and micro nutrients from our overall collection of 25 nutrients.
Subsequently, we constructed our test set to fulfill two specific
conditions:

e Every one of the 10 X 12 relations was represented at least
once, provided it was present in the data.

e The test set was designed to be as diverse as possible, en-
suring that we included the minimal number of foods that
satisfied the first condition.

By following these rules, we obtained a test set consisting of 90 re-
lations and a training set comprising 9,048 relations. As before, we
decided to use our improved model with 10 classes. The evaluation
was conducted five times, ensuring that each test set differed as
much as possible from the ones in previous iterations while consid-
ering the two aforementioned conditions. The results are presented
in Table 5. As it is evident, our model performed consistently across
all five iterations, thus demonstrating its robustness.

5 CONCLUSION

Food Composition Databases are an important information resource
used in various domains, including food and nutritional science,
food industry for food production and consumption, as well as pub-
lic health. As the presence of many (even tens of percents) missing
data significantly restricts their usability, many solutions to this
problem have been proposed. As one of them, we explored the use
of graph embedding models for missing value imputation in FCDBs.
By embedding the nodes in a low-dimensional space, these models
can capture the underlying structure and relationships in the data,
providing accurate imputations even when there are missing values.
However, the small size of our database limited our experiment,
so further research is needed to explore the effectiveness of these
models for different types of food databases and missing value pat-
terns. Ultimately, the use of these techniques shows promise and
could lead to more accurate and reliable analyses in the field of
nutritional research and dietary assessment. For future work, we
are planning to present a comparison of the performances of the
proposed model against baselines.
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