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ABSTRACT
This paper presents a study on applying the Deep Embedded Clus-
tering (DEC) algorithm for unsupervised feature learning of motor
imagery data. We pinpoint the challenges of collecting labeled EEG
data and developing complicated hand-crafted feature extraction
that functions for only one BCI paradigm, and how the DEC algo-
rithm can adress these problems. The DEC algorithm is used to
learn robust features from motor imagery EEG data, then subse-
quent clustering of the learned features is performed. By leveraging
the clustering results, the proposed method aims to overcome la-
beling constraints and classify new samples in an unsupervised
manner based on cluster membership. The effectiveness of the
approach is evaluated using a large motor imagery data set and
various performance metrics, including accuracy of cluster assign-
ments, based on minimum distance to a centroid, and normalized
mutual information. The results demonstrate promising outcomes
in unsupervised motor imagery feature learning and highlight the
potential of unsupervised feature learning for BCI applications.
Future work could include exploring self-supervised methods and
incorporating context-based approaches for more general-purpose
EEG feature learning.
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1 INTRODUCTION
Although Brain Computer Interfaces(BCIs) are still rather experi-
mental, they hold promise across various domains including, but not
limited to, assistive technologies, neurorehabilitation, and epilepsy
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detection[19,18,5]. Many different paradigms to implement BCIs
exist, such as the steady State Visual Evoked Potential(SSVEP), how-
ever, motor-imagery based approaches are especially popular. The
fundamental concept behind motor-imagery BCIs is based on indi-
viduals mentally simulating specific movements, such as clenching
their left fist, while their resulting EEG signals are recorded and
classified in real time by machine learning algorithms to decode the
intended movement. Thus, two challenges are to train classifiers
that can reliably decode motor-imagery signals and finding robust
features to train these classifiers with.

Most motor-imagery classifiers are supervised and use complex
feature extraction methodologies, such as the Common Spatial Pat-
tern algorithm which optimizes a spatial filter to maximize the
variance between class matrices of different mental states[20]. This
presents two main problems. The first is that EEG data is expen-
sive and time-consuming to collect, and labeling constraints for
supervised classifiers only amplify this. Secondly, significant ef-
fort is devoted to developing highly specialized feature extraction
algorithms, which can be challenging to implement and require
additional research to extend them to multi-class scenarios. This
multi-class extension is particularly crucial in the context of any
BCI with more than two mental states.

To address these problems, we suggest an automatic feature
learning framework using the Deep Embedding Clustering algo-
rithm (DEC), first implemented by Xie et al.[4] for feature learning
and subsequent clustering of the MNIST image data set. We address
the issue of hyper-specialized feature extraction by aiming for the
beginnings of a more general feature learning framework that can
be more robust to variance of EEG signals between subjects. As
we mentioned, the DEC algorithm also performs subsequent clus-
tering of learned features, thus, we also aim to alleviate labeling
constraints by classifying new samples of motor imagery data by
cluster membership. Although not with the DEC algorithm, this
main idea has been applied to image classification in [3].

The idea of feature learning for motor imagery data, and more
general EEG data, is not new. Tabar et al.[15] use the Short-Time
Fourier Transform to convert a multi-channel EEG signal into an
image format, and use convolutional layers for automatic feature
learning before classification. Stober et al.[14] use a convolutional
auto-encoder approach to extract relevant features while subjects
listened to different types of music. Wen et al. [10] also use convolu-
tional auto-encoders for an unsupervised feature learning approach
of epilepsy related EEGs before learned features are passed to a
classifier.

In light of these challenges and previous work, our goal is to
expand upon feature learning methods for motor imagery data
specifically by using the DEC algorithm. Ultimately, we provide an
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effective introduction for unsupervised feature learning and begin
a framework for gradually removing the need for data annotation
on EEG data sets.

We structure this paper as follows: first, we present our data-set
and our associated processing pipeline, also addressing concerns
related to data volume requirements for the effective utilization of
neural networks. Next, we delve into the DEC algorithm, which
extracts optimal data features for clustering. We then discuss our
experimental results, encompassing unsupervised classification and
the evaluation of the performance of learned features in conjunction
with supervised algorithms. Finally, we conclude with a discussion
of possible future work involving self-supervised methods and
possibilities of context based approaches for more general purpose
EEG feature learning.

2 METHODOLOGY
This paper implements an unsupervised feature learning framework
using DEC and performs subsequent clustering and classification
through cluster membership. We first review our data set, data
processing pipeline, a quality check of our augmented data, and an
overview of the DEC algorithm with our modifications to adjust it
for EEG data.

2.1 Data set
Given that we are using a Deep Learning based approach to learn
the most salient motor imagery features, a sizable data set is im-
portant. We use the largest public motor imagery data set available
produced by Kaya et al.[6] that contains 75 different recording
sessions with four different BCI motor-imagery paradigms. Each
recording session is approximately 55 minutes long, split into three
interaction segments. Each interaction segment consists of 300
motor-imagery trials. During each recording session participants
were comfortably seated while observing a graphical user interface
that was used to indicate which mental imagery was to be imple-
mented for the upcoming trial. Each trial consisted of the execution
of the mental imagery once, for one second, with a 1.5 to 2.5 seconds
pause between trials. When extracting trials, we only consider the
first 0.85 seconds of each trial, following the same methods of Kaya
et al.[6] in their analysis. We use Min-Max Normalization on the
data due to the activation functions we used for our auto-encoder
described later.

We make use of the CLA paradigm to create a more feasible
introduction to our methods in the BCI domain. Specifically, the
CLA paradigm makes use of only motor-imagery involving the left
and right hand. For each respective hand, participants executed the
associated motor imagery by imagining the clenching of the fist of
the respective hand once per trial. Implementation of left-hand v.s
right-hand motor imagery with channels C3 and C4 is especially
popular and is the approach we take.

2.2 Data Preparation
The original data was down-sampled to 200Hz by the Neurofax
recording software, then a band-pass filter of 0.53-70Hz was applied.
We do not apply another filter so as to truly test the capabilities
of our models to discern between noise and underlying patterns
between the class matrices of data. In total we make use of 9897

motor-imagery trials from the CLA paradigm. However, for the
purpose of Deep Learning based approaches this is still not a lot of
data and we are at risk of over-fitting on this small data set, thus
we also investigate possible data augmentation techniques.

Data augmentation is common in Computer Vision applications
for image classification with techniques such as geometric transfor-
mations, addition of noise, etc. However, in the case of EEG signals,
much more care needs to be taken into consideration both in the
type of augmentation done so as to not change the characteristics
of signals from the original data distribution, and to also make
sure that models are not just over fitting on augmented data. Data
augmentation is not very widely used in motor-imagery classifica-
tion. George et al.[8] and Lashgari et al.[9] cover commonly used
EEG augmentation techniques, and among these noise addition and
trial cropping with a specified window is popular. Parvan et al.[16]
actually used noise addition for the OpenBCI Competition IV data
set 2b and showed improvements over using no augmentation.

Within this paper, we make use of Gaussian noise addition, but
do not perform any cropping to preserve the full temporal dynamics
of each motor-imagery trial. Instead, we combine noise addition
with time warping of trials, where trials are temporally distorted
by compressing or stretching different sections of each trial. The
justification for the usage of time warping is that it can create
enough variability between augmented and original trials, but at
the same time preserve the characteristics of original data since it is
randomly applied to different sections of each trial and some of the
original data is unchanged. For each trial, we first implement time
warping four times, and then on each resulting trial we perform
Gaussian noise addition twice, resulting in a data set eight times as
large. Before any augmentation is performed, we split the original
trials into a validation and training set, ensuring that no validation
data is used to create new trials, we did not include an external
testing set due to concerns of data set size at this point.

2.3 Validity of Augmented Data
One of the main concerns with augmented data is that the newly
generated data might be too similar to the original data set and
our complex neural network model will just over-fit on the orig-
inal data and its similar variations. To evaluate just how similar
our augmented data is to the original data we first organize our
trials into right and left hand motor imagery trials, within both
the original and augmented data. Then, we sampled one thousand
random points from each of the organized data sets, flattened them,
and calculated the Pearson Product-Moment correlation between
10002 possible pairings among both the classes of mental imagery.
To visualize this, we use a heat map, and for a quantitative measure,
we also report the average magnitude of the correlation.

However, we must also take care that the augmented data is not
too different from the original data distribution either so that we
do not over fit on unfaithful representations of real world signals,
which will result in poor performance on new samples that are
not a reflection of what our models were trained on. To get an
estimate of how well our augmented data follows the original data
distribution we make use of the Kolmogorov-Smirnov(KS) Test[7].
The KS test compares the cumulative frequency distribution(CDF)
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for some population and the CDF for a set of observations. For our
context,

𝐹𝑁 (𝑋 ) = 𝑘

𝑁

𝑆𝑁 (𝑋 ) = 𝑙

𝑁

Where 𝐹𝑁 (𝑋 ) represents the CDF of a signal from the original
data, and 𝑆𝑁 (𝑋 ) represents the CDF of a signal from the augmented
data; 𝑘 and 𝑙 are the number of values in the respective signal less
than or equal to X, and then divided by the length of the signal, 𝑁 .
To compare then whether or not the original and augmented signal
come from the same data distribution, we compute the test statistic,

𝑑 =𝑚𝑎𝑥 [𝐹𝑁 (𝑋 ) − 𝑆𝑁 (𝑋 )]

Which is the maximum value between the original signals CDF
and the augmented signals CDF. If this value is too large, then it
might suggest that the original and augmented signal do not come
from the same distribution. The maximum is not a very robust
statistic, and there is already much between subject variability
between individual trials in the original data, so to remedy this, and
get an interpretable test result,we average the trials into just one
signal for both the augmented and original data, for both right and
left hand motor imagery trials, to get rid of the between subject
variability between individual trials. Additionally, the KS Test is a
univariate goodness of fit test, hence, we apply the test to channels
C3 and C4 separately. The test results indicate that it is reasonable
to conclude that the original and augmented data do not come from
different distributions.

Figure 1: p-values for the KS test results on the right hand motor
imagery’s across averaged trials. p = 0.93 for channel C3 and p = 0.79
for channel C4. Average real and augmented trials plotted in blue
and green respectively

Figure 2: p-values for the KS test results on the right hand motor
imagery’s across averaged trials. p = 0.79 for channel C3 and p = 0.61
for channel C4. Average real and augmented trials plotted in blue
and green respectively

Figure 3: Correlation heat map for right and left trials

When we interpret together the relatively low average magni-
tude of correlation between the random sample of the original and
augmented trials, and the results of the four separate KS test results,
there seems to be empirical evidence that we have reached a good
balance with our augmented data. It maintains the original data
distribution, while not being too similar.
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3 DEEP EMBEDDED CLUSTERING
Generally, the goal of clustering algorithms is to partition data into
groups of similar points based on underlying patterns. Many clus-
tering algorithms use distance based metrics to group data based on
theminimum distance to some set of𝑘 cluster centers {𝜇 𝑗 }𝑘𝑗=1. How-
ever, for high dimensional data these distance based approaches
tend to not be very effective due to the curse of dimensionality[17].

The Deep Embedding Clustering algorithms belongs to a class
of methods known as Deep Clustering algorithms that aim to learn
a non-linear mapping 𝑓𝜃 : 𝑋 → 𝑍 that makes clustering more
convenient, where X is the original data space, and Z is the reduced
space. The parameters of 𝑓𝜃 are updated iteratively by first creating
soft assignments of data points to clusters in the reduced space. A
target distribution is then calculated and the loss of the model is
defined as the distance between the soft assignments and the target
distribution, typically expressed as the Kullback-Leibler Divergence.

To initialize the parameters of 𝑓𝜃 , an auto-encoder is pre-trained
on the data, which is a type of neural network that consists of an
encoder, which reduces the data to a lower dimensional space, and
then a decoder that attempts the reconstruct the input from the re-
duced state.We first discuss the process of creating soft assignments
and optimizing their distance to an auxiliary target distribution.

3.1 Optimizing KL-Divergence
3.1.1 Soft Assignments. We have a set of initial parameters for
𝑓𝜃 . For some point in the original data space, 𝑥𝑖 , we transform it
into its latent representation 𝑧𝑖 and calculate a similarity score
between 𝑧𝑖 and all cluster centers 𝜇1, 𝜇2, ...𝜇𝑘 using the Student’s
t-distribution kernel to deal with the over-crowding problem[12].

𝑠𝑖 𝑗 =
(1 + ||𝑧𝑖 − 𝜇 𝑗 | |2/𝛼)

−𝛼+1
2∑

𝑘≠𝑗 (1 + ||𝑧𝑖 − 𝜇𝑘 | |2/𝛼)
−𝛼+1
2

Where 𝑠𝑖 𝑗 is the similarity score between point 𝑧𝑖 and cluster
cluster 𝜇 𝑗 , and 𝛼 is the degrees of freedom of the t-distribution,
which is set to 𝛼 = 1 in the DEC paper.

3.1.2 Target Distribution. The target distribution can then be
written as:

𝑝𝑖 𝑗 =
𝑠2
𝑖 𝑗
/𝑓𝑗∑

𝑘≠𝑗 𝑠
2
𝑖𝑘
/𝑓𝑘

where 𝑓𝑗 =
∑
𝑖 𝑠𝑖 𝑗 . One reason why the target distribution takes

on this form is to minimize the distortion of data from the original
data space to the reduced space. The objective then is to minimize
the KL-Divergence between the soft assignments assigned by 𝑓𝜃 ,S,
and the auxiliary target distribution, P:

𝐿 = 𝐾𝐿(𝑆 | |𝑃) =
∑︁
𝑖, 𝑗

𝑝𝑖 𝑗 𝑙𝑜𝑔
𝑝𝑖 𝑗

𝑠𝑖 𝑗

3.2 Parameter Initialization
The authors of DEC use a stacked auto-encoder (SAE)[21] to ini-
tialize the parameters of 𝑓𝜃 , which is a special type of auto-encoder
where each layer feeds into another auto-encoder itself. They have
an increased model capacity because of this architecture, which is
an issue for our purposes given our previous discussion of lack of
real data. For the purposes of this paper then, we just use a standard
encoder-decoder structure.

3.2.1 Model Architecture. We make modifications to the stan-
dard DEC model architecture. To be able to encode both spatial and
temporal information, we first perform a spatial convolution on
signals fed into the model, and then apply temporal convolutions,
with multiple kernels per layer, before the data is then projected
to its latent representation. The reason for this architecture is to
encode both spatial and temporal information, but also to reduce
the parameter requirements of our model with the convenient pa-
rameter sharing property of the convolutional layers. The data is
then reconstructed using convolutional transpose layers, first in-
troduced by Zeiler et al.[22]. This similar architecture with just
a convolutional auto-encoder is used by Guo et al[1] to perform
feature learning on the MNIST image data set.

Since we used Min-Max normalization on the data, we use the
ReLU activation so that the data is projected to be between 0 and 1.
Due to this range of data in the reduced space, we then conveniently
pair this with the tanh activation for the decoder. We use the Adam
optimizer with a learning rate of 10−5 and optimize directly the
mean square error loss between model inputs and reconstructed
outputs. Both the encoder and decoder have a 30 percent drop out
in their weights. The auto-encoder is trained for 15 epochs, and
we experiment with different dimensions for the reduced space, as
is discussed in the results section. For the second part of training
where we optimize 𝑓𝜃 , all the training settings are kept the same,
except we only train the model for six epochs.

To initialize the cluster centers, {𝜇 𝑗 }𝑘𝑗=1, we run k-means clus-
tering once the original data reduced with the encoder parameters
after pre-training and use the learned cluster centers initially.

Figure 4: Architecture of our pre-trained auto-encoder. Signals first
go through a spatial and temporal convolution before being flat-
tened and projected down to their latent representations and being
reconstructed with transposed convolutional layers
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4 RESULTS
We use two main metrics that Xie et al.[4] used in the evaluation
of the original DEC algorithm. We classify data and calculate these
metrics only after transforming the data once more, after features
have been learned, with t-SNE[12]. First, we consider cluster mem-
bership by assigning points labels based on distances to cluster
centroids. For some embedded point 𝑧𝑖 , its assigned class is

𝑦𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑗 | |𝜇 𝑗 − 𝑧𝑖 | |22
and the accuracy(ACC) defined across all the assigned labels is:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑦,𝑦) = 1
𝑛

𝑛∑︁
𝑖=1

𝐼 (𝑦𝑖 = 𝑦𝑖 )

Next, we also consider the quality of the clusters and how well
they assign with the ground truth labels of the embedded points
𝑧1, 𝑧2, ...𝑧𝑛 by using Normalized Mutual Information (NMI).

𝑁𝑀𝐼 (𝑦,𝑦) = 2𝐼 (𝑦,𝑦)
𝐻 (𝑦) + 𝐻 (𝑦)

Where 𝑦 and 𝑦 are the collection of ground truth and assigned
labels for all the embedded points {𝑧𝑖 }𝑛𝑖=1, 𝐼 (𝑦,𝑦) denotes themutual
information between y and𝑦, and𝐻 (.) denotes entropy. For further
discussion, we use Z, an integer, as the dimension of the reduced
space.

We present a table of results below reporting both the accuracy
by assigning predicted labels to embedded points by cluster mem-
bership, and with supervised models to compare results. The NMI
metric in the below table only applies for the previously mentioned
unsupervised method.

Table 1: ACC(%) And NMI

ACC
Z,CLF CM KNN RF LSVM AVG NMI

8 56.75 48.68 51.11 56.31 52.36 0.0387
16 59.65 51.06 53.53 58.14 56.09 0.0196
24 64.75 58.33 58.98 64.64 61.37 0.0743
32 51.20 50.05 50.95 49.54 50.63 0.0012
AVG 58.08 52.03 53.64 57.15 55.11 0.0334

Each entry in the above table corresponds to the accuracy of a
classifier being applied onto validation data in a different dimen-
sionality latent space, Z. All classification is done on validation
data after it has been transformed into its latent representation
and then t-SNE is applied. Classifier names have been abbreviated.
KNN stands for K-Nearest Neighbors; RF stands for Random For-
est; LSVM stands for SVM with linear kernel;and CM stands for
’Cluster Membership’, which as we have discussed is our method
of classifying points by comparing distances to all cluster centroids
and assigning the most likely class as the one that is the shortest
distance away.

Our table has an AVG row and an AVG column. The entries of
the row AVG correspond to the average accuracy of the same clas-
sifiers across different values of Z, while the entries of the column
AVG correspond to the average accuracy of different classifiers, but
across the same value of Z.

Figure 5: Accuracy of the cluster membership method of classifica-
tion when the encoder is optimized for a variable number of epochs
in bluewith Z=24, while the accuracy for SVM shownwith the dashed
orange line

The highest recorded accuracy is recorded at 65.2% and is achieved
by training the encoder, after auto-encoder pre-training, for 7
epochs with Z = 24. Plot achieved with perplexity = 30 and 5000
iterations on the original 24 dimensional space.

5 DISCUSSION
We achieve an optimal accuracy of 65.2% accuracy using no label
information by directly clustering feature representations and using
cluster membership as labels. Initially, whenwe reduced the original
points to a dimensionality of Z = 8 and gradually increased Z, the
accuracy through cluster membership would also increase, but
then begin to decrease almost as if in a negative quadratic fashion.
Besides our method unsupervised classification, directly applying
an SVM classifier with a linear kernel on the t-SNE transformed
features yielded similar results.

There seems to be a delicate balance of choosing the dimensional-
ity of the latent representations to preserve important information,
but at the same time not including noise. Z should obviously be
small compared to the dimensionality of the original data so that
only the most salient features are extracted, however, if Z is too
small then sufficient information is not being stored in the latent
representations of the data that can act as faithful representations
of the original signals. We observe an optimal point for accuracy
through cluster membership at Z = 24, and after that at Z = 32 it
seems some of the extracted features ended up just being noise and
adversely affecting cluster quality. On the topic of limiting noise as
much as possible, perhaps clustering quality and accuracy could be
enhanced if trials were initially filtered to be in the characteristic
mu rhythm for motor imagery signals from 8-13Hz[13] to include
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Figure 6: t-SNE visualization of of the transformed space with the
highest accuracy classification by cluster membership, where Z =
24. Plot achieved with perplexity = 30, and 5000 iterations. Blue
and green points representing left and right hand motor imagery’s
respectively, with the red and yellow dots representing the associated
cluster centroids

maximally relevant information in our signals instead of the entire
0.1 - 70Hz range we use.

There was also a slight effect based on how many epochs the
encoder was trained for. Upon running experiments with Z = 24,
the accuracy very gradually rose as a more convenient space for
clustering was being formed, but it seems it is possible for this space
to be distorted too much and cause accuracy by cluster membership
to fall around the 7-8 epochs of training mark.

Ultimately, even though we use data augmentation to combat the
fact that we are using a complex unsupervised model; for the time
being, handcrafted feature extraction seems to yield better results
than many of the current unsupervised approaches to learning
features in motor imagery signals. However, the goal of this work
was to not develop a state of the art method, but rather to introduce
discussions and a possible algorithm for how one might go about
unsupervised feature extraction in EEG signals. The end goal is
to remove data annotation requirements for EEG data sets so that
dataset and model development can be greatly accelerated. Another
good direction to embark on, might be to consider a contrastive
loss function[11] to learn more robust features.

6 CONCLUSION
The key in effective feature learning of general biological signals
will not occur in small tweaks of existing saturated methodologies.
Rather, it will come from adapting more modern frameworks that
take into account more robust considerations such as incorporating
data and label context into features rather than considering just raw
data instance and label pairings. Unsupervised approaches may not

be the answer either, and currently there is a lack of applications
of contrastive learning methodologies: methods that can generate
pseudo-labels for large quantities of data that can be transferred to
a later task, which was motor imagery decoding in our case. The
field is very ripe for applications of contrastive learning on creating
informative features for EEG signals, and should be considered for
subsequent work.
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REPRODUCING OUR RESULTS
To reprododuce our results please visit the GitHub page created
for this project that details how data was converted into a usable
format for models, how to use our code to train our models, and
then how to directly implement them.
The below repository has a Jupyter Notebook that goes into great
detail about how we achieved our results, providing a step-by-step
analysis from data acquisition, all the way to our results.

Data set: https://www.nature.com/articles/sdata2018211
GitHub Repo: https://github.com/TekinGunasar/KDD-UC-2023
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