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ABSTRACT
Time series data is a crucial form of information that has vast
opportunities. With the widespread use of sensor networks, large-
scale time series data has become ubiquitous. One of the most
prominent problems in time series data mining is representation
learning. Recently, with the introduction of self-supervised learning
frameworks (SSL), numerous amounts of research have focused on
designing an effective SSL for time series data. One of the current
state-of-the-art SSL frameworks in time series is called TS2Vec.
TS2Vec specially designs a hierarchical contrastive learning frame-
work that uses loss-based training, which performs outstandingly
against benchmark testing. However, the computational cost for
TS2Vec is often significantly greater than other SSL frameworks. In
this paper, we present a new self-supervised learning loss named,
adaptive resolution loss. The proposed solution reduces the num-
ber of resolutions used for training the model via score functions,
leading to an efficient adaptive resolution learning algorithm. The
proposed method preserves the original model’s integrity while
significantly enhancing its training time.

CCS CONCEPTS
• Computing Methodologies→Machine Learning; • Theory
of Computation → Design and Analysis of Algorithms.
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1 INTRODUCTION
Time series data is a crucial form of information that has vast op-
portunities [1, 6, 12, 14, 15, 18, 19] . Recently, with the widespread
use of sensor networks, large-scale time series data have become
ubiquitous. Such data gives us a dense amount of valuable informa-
tion. The task of mining time series could help us harvest important
trends, patterns, and crucial behaviors, which ultimately benefit
various applications.

One of the most prominent problems in time series data min-
ing is representation learning: transforming time series into low-
dimensional representations that can represent their semantic sim-
ilarity while benefiting various downstream tasks[20]. Recently,
with the introduction of self-supervised learning frameworks (SSL)
for image, video, and natural language representation learning [2,
3, 8–10, 13, 21], numerous research has focused on designing an
effective SSL for time series data. One of the current state-of-the-art
SSL frameworks in time series is called TS2Vec [20]. TS2Vec spe-
cially designs a hierarchical contrastive learning framework that

uses loss-based training, which performs outstandingly against
benchmark testing.

While TS2Vec outperforms existing state-of-the-art models, the
model’s computational cost ismuch heavier than other self-supervised
learning frameworks. It utilizes hierarchical enumeration to com-
pute the loss in each resolution of the time series, which signifi-
cantly increases the computational burden.

This paper proposes a single resolution-based loss function to
train the model. Intuitively, since every resolution series is highly
correlated, we can train one resolution while improving the rest.
In other words, instead of computing all resolutions, we designed
an algorithm to adaptively select the resolutions, which can reduce
the loss based on current and historical training loss. In the experi-
ment section, we demonstrate how our proposed approach achieves
similar accuracy and performance with classification tasks while
showing that it is more efficient than the original TS2Vec model.

Our motivation behind this project lies within the improvement
of the model, in order to advance Data mining as a whole. If our
implementation is deemed suitable we can then improve similar
models with a similar implementation leading to the availability of
incredibly faster and robust models for the purpose of analyzing
Time Series data.

In summary, the contribution of this paper is:

• Proposing an efficient self-supervised learning loss named
adaptive resolution loss for time series self-supervised frame-
work based on the TS2Vec framework.
• Evaluating the proposed method on time series classifica-
tion tasks. The proposed approach achieves similar accuracy
performance compared to TS2Vec while the execution speed
is improved.

The following sections of the paper are organized as follows:
Section 2 discusses the relatedwork. Section 3 describes the problem
definition. Section 4 describes the existing TS2Vec self-supervised
learning framework. Section 5 introduces the proposed adaptive
resolution loss.We present our experiments in Section 6 and provide
a conclusive analysis of our research in Section 7.

2 RELATEDWORK
Recently, the self-supervised learning (SSL) framework [2, 3, 8–
10, 13, 21] is introduced for vision representation learning in the
research domain of computer vision. The goal of SSL is to train a
deep learning model to understand the semantic-level invariance
characteristic through carefully designed pretext tasks from high-
level semantic understanding related to image data (e.g. learning
rotation-invariant representation for images) [7, 11, 21]. Recently,
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an increasing amount of time series representation learning re-
search have been focused on designing the self-supervised deep
learning framework [4, 5, 16? ]. Most models are designed based
on the unsupervised contrastive learning task [2].

Franceschi et al.[5] introduces an unsupervised contrastive learn-
ing framework by introducing a novel triplet selection approach
based on segment’s context. Similarly, Tonekaboni et al. proposed
a framework named Temporal Neighborhood Coding (TNC) [16].
TNC aims to utilizes the temporal correlation along neighboring
segments to learn the representation. Eldele et al. [4] introduces a
Temporal and Contextual Contrast (TS-TCC) based framework. In
TS-TCC, two types of augments, strong augmentation and weak
augmentation are used to perform contrastive learning. Yue et al.
[20] proposed a framework named ts2vec. The proposed framework
introduces a random cropping based augmentation and a hierarchi-
cal loss to stabilize the obtained embedding. It achieved significantly
better performance compared with previous methods.However, we
found the computational burden for Ts2Vec is also higher than
existing works.

3 PROBLEM STATEMENT
Next we will briefly describe the definitions and problem statement.

A Time Series 𝑇 = 𝑡1, . . . , 𝑡𝐿 is a set of observations ordered by
time where 𝑡𝑖 ∈ 𝑅𝑀 .

Similarly, we define a Subsequence 𝑠𝑝,𝑞 = [𝑡𝑝 , . . . , 𝑡𝑞] of a time
series as a contiguous set of observations starting from position 𝑝
and ends at 𝑞 with length 𝑙 = 𝑝 − 𝑞 + 1.

Given 𝑁 time series data D = 𝑇1,𝑇2, . . . ,𝑇𝑁 , the goal of the rep-
resentation learning task is to find a linear mapping ℎ(·) : 𝑇𝑖 →
𝑒𝑖 which maps all the raw time series data 𝑇𝑖 into a 𝐾-dimensional
latent space 𝑅𝐾 such that all semantic levels are similar in the raw
time series,and the data is preserved.

We next describe the SimCLR framework [2], the framework
that is adopted in the TS2Vec model. It essentially creates the repre-
sentations of the data without utilizing the label information. The
framework is illustrated in Fig 1. Given a sample 𝑥 from a training
set D, two different views of 𝑥 , 𝑥1 and 𝑥2, are augmented based
on a view augmentation operator 𝑎(.). The views are treated as
the data that shared the same semantic meaning as 𝑥 . The latent
representation of 𝑥1 and 𝑥2, ℎ1 and ℎ2, are then obtained through a
nonlinear function ℎ(·) modeled by a deep learning model. Another
task-specific nonlinear mapping function 𝑔(·) is then applied to
map ℎ1 and ℎ2 into 𝑧1 and 𝑧2 respectively. Lastly, the contrastive
learning loss of 𝑥 is defined based on 𝑧1 and 𝑧2 through a function
ℓ (𝑧1, 𝑧2).

4 TS2VEC: SELF-SUPERVISED LEARNING FOR
TIME SERIES

4.1 TS2Vec Framework
Our model’s base architecture is adopted from the original TS2Vec
model architecture, which comprises of three main components:
an Input Projection Layer ℎ(.), Random Cropping Augmentation
𝑎𝑐𝑟𝑜𝑝𝑖𝑛𝑔 (.), and Time Stamp Masking Module 𝑎𝑚𝑎𝑠𝑘 (.).

4.1.1 Random Cropping Augmentation 𝑎𝑐𝑟𝑜𝑝𝑖𝑛𝑔 (.). :

Figure 1: Contrastive Learning based Self-Supervised Learning Framework

Given an input time series, the model first generates two aug-
mentations based on random cropping. Intuitively, the model gen-
erates two overlapped sub-sequences 𝑠𝑖𝑝,𝑞 and 𝑠𝑖

𝑝′,𝑞′ where [𝑝, 𝑞] ∩
[𝑝′, 𝑞′] ≠ ∅.

4.1.2 Time Stamp Masking Module 𝑎𝑚𝑎𝑠𝑘 (.). : A random masking
is applied to generate an augmented context view by masking latent
vectors at randomly selected timestamps. It essentially hides some
of the information by creating a slightly different version of the
data from the original, allowing the model to learn more robust
representations.

Both the cropped-and-masked sub-sequences will pass through
Input Projection Layer to obtain the embedding 𝑧𝑖 and 𝑧′𝑖 .

4.1.3 Input Projection Layerℎ(.). Unlike classical contrastive learn-
ing, the function ℎ(.) generates an embedding series 𝑧𝑖 (i.e. defined
as another time series with 𝐾-dimensional observations in each
time step) instead of simple 𝐾-dimensional vector. The generated
series will be used to compute the hierarchical contrastive loss
used in TS2Vec. Note that only the overlapping region shared by
𝑧𝑖 and 𝑧′𝑖 are used to compute loss. Following the architecture in
TS2Vec, ℎ(.) function is modeled through a dilated convolution
neuron network.

4.2 Hierarchical Loss Function
TS2Vec performs a hierarchical enumeration process to learn con-
trastive loss on top of the 𝑧𝑖 , 𝑧′𝑖 in multi-resolution.

Two different contrastive loss functions: temporal and instance-
wise losses, are applied per resolution.

4.2.1 Temporal Loss: The Temporal Loss function regards two
views of the same timestamp in 𝑧𝑖 , 𝑧′𝑖 as positive pairs, while those
at differing timestamps as negative pairs. Concretely, the loss is
written as:

ℓ
𝑡𝑒𝑚𝑝
𝑟 =

∑︁
𝑖

∑︁
𝑡

−𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑑𝑖,𝑡 · 𝑑′𝑖,𝑡 )∑

𝑡 ′

(
𝑒𝑥𝑝 (𝑑𝑖,𝑡 · 𝑑′𝑖,𝑡 ′ ) + 1[𝑡≠𝑡 ′ ]𝑒𝑥𝑝 (𝑑𝑖,𝑡 · 𝑑𝑖,𝑡 ′ )

)
(1)

where 𝑑𝑖 represents the time series down-sampled from 𝑧𝑖 with
average-based pooling of window size 2𝑟−1

4.2.2 Instance Loss: The Instance Loss function regards two em-
beddings generated from the same instance as positive pairs, while
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those at differing instances as negative.

ℓ𝑖𝑛𝑠𝑡𝑟 =
∑︁
𝑖

∑︁
𝑡

−𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑑𝑖,𝑡 · 𝑑′𝑖,𝑡 )∑𝑁

𝑗=1

(
𝑒𝑥𝑝 (𝑑𝑖,𝑡 · 𝑑′𝑗,𝑡 ) + 1[𝑖≠𝑗 ]𝑒𝑥𝑝 (𝑑𝑖,𝑡 · 𝑑 𝑗,𝑡 )

)
(2)

4.2.3 Resolutions with relation to Loss Functions: With each iter-
ation of the TS2Vec model, a general loss value is output which
is produced by a combination of both instance and temporal loss
functions per resolution of the dataset:

ℓ𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑟 = 𝛼ℓ
𝑡𝑒𝑚𝑝
𝑟 + (1 − 𝛼)ℓ𝑖𝑛𝑠𝑡𝑟 (3)

where 𝛼 is a hyper-parameter. And the final loss being:

ℓ𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
∑︁
𝑟

ℓ𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑟 (4)

In the original TS2Vec model, the respective resolutions of the
time series, whether the semantic information is stored in coarse or
fine-grained resolutions, are not considered. Moreover, the current
TS2Vec model utilizes all resolutions evenly throughout training,
which are costly with larger datasets. In the next section, we will in-
troduce our proposed loss adaptive resolution selection loss, which
only computes a single resolution per epoch, which can significantly
enhance the algorithm’s efficiency.

5 ADAPTIVE RESOLUTION LOSS
In this section, we will present our proposed loss function. De-
veloped to enhance the efficiency and accuracy of TS2Vec. Our
function introduces a unique adaptive resolution selection process
tailored to optimize computational power across different resolu-
tions. By dynamically focusing on the most important resolutions
during optimization, our method offers a substantial leap toward
minimizing loss across all resolutions. The following subsections
will discuss our solutions’ specifics, motivation, core components,
and the algorithm’s complex operations. Furthermore, we will illus-
trate how this adaptive resolution loss reduces the model’s training
costs, demonstrating its advantage over existing methods.

5.1 Adaptive Resolution Selection
The algorithm summary is shown in Algorithm 1. Intuitively, by se-
lecting the most important resolution to optimize, we can optimize
the loss without using the full computation power in all resolutions.
Since each resolution of 𝑑𝑖 is highly correlated, training a specific
resolution potentially minimizes the loss of all other resolutions.
Specifically, we measure the resolution’s importance by decreasing
loss speed. If the loss is not decreasing or increasing, we will enforce
the optimization algorithm to focus on this resolution. If the loss
decreases very fast, we may pretend to prioritize other resolutions.

Our current implementation is split into multiple components
with different sub-goals, which work together to create our final
implementation. The algorithm consists of three steps, firstly, it
aligns each resolutions based on a global resolution index. Secondly,
it will assign an important score value to each resolution. Finally,
the algorithm will randomly choose one resolution to optimize
based on a multinomial distribution, which is determined by the
important scores This process is repeated throughout the course of
the training.

Algorithm 1 Overall Optimization Procedure
1: INPUT: 𝑙𝑜𝑠𝑠_𝑎𝑟𝑟 , 𝑛𝑒𝑡 , 𝑑𝑎𝑡𝑎, 𝑎
2: 𝑙𝑜𝑠𝑠_𝑎𝑟𝑟 ← 𝑈𝑝𝑑𝑎𝑡𝑒_𝐿𝑜𝑠𝑠_𝑆𝑡𝑜𝑝𝐺𝑟𝑎𝑑 (𝑙𝑜𝑠𝑠_𝑎𝑟𝑟, 𝑛𝑒𝑡, 𝑑𝑎𝑡𝑎)
3: 𝑎𝑙𝑖𝑔𝑛𝑒𝑑, 𝑖𝑛𝑑𝑒𝑥 ← 𝑆ℎ𝑖 𝑓 𝑡 (𝑙𝑜𝑠𝑠_𝑎𝑟𝑟, 𝑒𝑝𝑜𝑐ℎ𝑠, 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠)
4: 𝑠𝑐𝑜𝑟𝑒 ← 𝑆𝑐𝑜𝑟𝑒 (𝑎𝑙𝑖𝑔𝑛𝑒𝑑, 𝑖𝑛𝑑𝑒𝑥, 1)
5: 𝑟 ← 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑠𝑐𝑜𝑟𝑒)
6: 𝑙𝑜𝑠𝑠 ← 𝑙𝑜𝑠𝑠_𝑎𝑟𝑟 [𝑟 ] .𝑔𝑟𝑎𝑑_𝑒𝑛𝑎𝑏𝑙𝑒𝑑 ()
7: 𝑚𝑜𝑑𝑒𝑙 .𝑢𝑝𝑑𝑎𝑡𝑒 (𝑙𝑜𝑠𝑠)
8: END

Algorithm 2 Shift function
1: INPUT: 𝑎𝑟𝑟, 𝑒𝑝𝑜𝑐ℎ𝑠, 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

{Flip the array. The index starts from left to right}
2: 𝑓 𝑙𝑖𝑝𝑝𝑒𝑑 ←FlipVector(𝑎𝑟𝑟 )
3: 𝑛𝑢𝑚_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← ObtainNumOfResolution(𝑓 𝑙𝑖𝑝𝑝𝑒𝑑)
4: for i in range(epochs) do
5: 𝑎𝑙𝑖𝑔𝑛𝑒𝑑 [𝑖] ← FilledMissingRes(𝑓 𝑙𝑖𝑝𝑝𝑒𝑑 [𝑖],𝑓 𝑙𝑖𝑝𝑝𝑒𝑑 [𝑖 − 1])
6: end for
7: OUTPUT : 𝑎𝑙𝑖𝑔𝑛𝑒𝑑, 𝑛𝑢𝑚_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
8: END

5.1.1 Index shift function: Since the overlapping area between 𝑧
and 𝑧′ can be an arbitrary length between [1, 𝐿 − 1], the resolution
indices 𝑟 in different epochs do not represent the same resolution.
Therefore, the proposed algorithm will first align each resolution
across different epochs. In order to accurately compute the score,
we design a flip and shift function that properly reorders the reso-
lutions. The algorithm shown in Algorithm 2 is a simplified repre-
sentation. The algorithm consists of two steps. First, the algorithm
reorders the resolutions and obtains the number of resolutions from
the given dataset (Lines 2 & 3). Second, we interpolate the most
current loss value for any resolution absent because of the variable
length of the overlapping region (Lines 4 & 5). By properly pre-
aligning the array of resolutions, we can now suitably assign them
a score value.

Algorithm 3 Score Function
1: INPUT : 𝑙𝑜𝑠𝑠_𝑎𝑟𝑟, 𝑖𝑛𝑑𝑒𝑥, 𝑒𝑝𝑜𝑐ℎ, 𝑎 = 0.1
2: 𝑙𝑜𝑠𝑠_𝑐𝑢𝑟 ← CroppedRes(𝑙𝑜𝑠𝑠_𝑎𝑟𝑟 , 𝑛𝑢𝑚_𝑟𝑒𝑠 [𝑒𝑝𝑜𝑐ℎ])
3: 𝑙𝑜𝑠𝑠_𝑝𝑟𝑒𝑣 ← CroppedRes(𝑙𝑜𝑠𝑠_𝑎𝑟𝑟 , 𝑛𝑢𝑚_𝑟𝑒𝑠 [𝑒𝑝𝑜𝑐ℎ − 1])
4: 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 ← 𝑙𝑜𝑠𝑠_𝑐𝑢𝑟 − 𝑙𝑜𝑠𝑠_𝑝𝑟𝑒𝑣
5: 𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑎 · 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒)
6: OUTPUT : 𝑠𝑐𝑜𝑟𝑒
7: END

5.1.2 Score function: After aligning the resolutions across epochs,
a score function is used to evaluate the importance of each resolu-
tion. The score function is described in Algorithm 3. Intuitively, at
a given epoch, the algorithm computes the loss difference between
current and previous epoch (Lines 2-4). Then the algorithm will
compute the score via a softmax function which is based off of
the resolutions loss. The greater the loss the greater the score is
(Line 5). We can then use this newly generated probability array to
pass on to sampling the resolution as seen in Algorithm 1 (Lines



KDD ’23, August 05–10, 2023, Long Beach, CA Garcia et al.

4 & 5). Note that this function ignores any absented resolution in
the original loss array, which means this array is usually smaller
than log𝐿 size. Formally, the score is computed via 𝑒

𝑥𝑗∑
𝑘 𝑒

𝑥𝑘
.

5.1.3 Probability function: The probability function (named Sam-
pling in Algorithm 1) is the final part of the adaptive resolution
setting. It utilizes the probability array produced by the score func-
tion, as seen in Algorithm 1 (Line 4), to select the most weighted
resolution (Line 5). It does so through a multinomial distribution
random variable sampling function, which makes a selection based
on the given probabilities. Finally, the chosen value is then used to
update the weights of the resolutions in the model (Lines 6 & 7).

5.2 Advantage of Proposed Method
In the proposed learning framework, the back-propagation will only
compute through a single-resolution loss function. Other than the
wanted resolution, all other loss functions can be computed with-
out considering gradient, which dramatically reduce the model’s
training cost. In the experiment, we demonstrate that the proposed
method is significantly more efficient than the original TS2Vec
model.

6 EXPERIMENT
We conducted our tests in a cloud-based environment offered by
Google Colab. Google Colab provides an interactive environment
that allows us to write and execute Python, which is ideal for ma-
chine learning and data analysis. We chose this environment as
our platform because it can share work through different com-
puters and access powerful computation resources. We evaluate
the experiments with an NVIDIA Tesla T4 GPU in most of the
experiments. When requiring more than 16GB GPU memory, we
leveraged NVIDIA A100 GPU for our experiment.

6.1 Datasets
We use 6 different datasets from UEA/UCR Multivariate Time Se-
ries Classification Archive. The characteristic of the datasets are
shown in Table 1. Each dataset exhibits variations in terms of di-
mension, number of samples, the length of the time series, and
other characteristics.

6.2 Experiment Setup
We willingly adopt this approach to test our implementation’s effi-
ciency and effectiveness thoroughly. We compared our proposed
method with the original TS2Vec framework through classification
accuracy performance in the experiment. Following the evalua-
tion protocol adopted in TS2Vec, we use the trained model ℎ(.) to
convert the multivariate time series into 𝐾 dimension representa-
tion. Then, the embedding is applied with a logistical regression
classifier to perform the classification task. Regarding parameter
optimization, we use the AdamW model with respective parame-
ters and learning rate. For all comparison experiments, we repeated
experiments five times for each dataset and reported the average
performance.

Throughout the experiment, we set embedding size 𝐾 = 16,
number of dilated convolution layer to 2, and learning rate, within

the AdamW optimization model, to 1𝑒 − 3. The final embedding is
computed through global average pooling across all timestamps.

Datasets

Train Size Test Size Length No. of Classes Type
BasicMotions 40 40 100 4 HAR
ArticularyWordRecognition 275 300 144 25 MOTION
UWaveGestureLibrary 2238 2241 315 8 HAR
CharacterTrajectories 1422 1436 182 20 MOTION
NATOPS 180 180 51 6 HAR
HandMovementDirection 160 74 400 4 EEG

Table 1: Dataset information

6.3 Comparison Evaluation
In this subsection, we will discuss our experiment’s accuracy and
efficiency results.

6.3.1 Accuracy: The average accuracy across five times experi-
ments per dataset is shown in Table 2, and the boxplot of the accu-
racy is shown in Figure 2(b). The best performing dataset in terms of
accuracy would be BasicMotions (Table 2), where both the proposed
and original implementations scored an average accuracy of 100% .
The worst performing dataset would be HandMovementDirection,
where the proposed implementation scored an average of 26.49%
accuracy while the original’s implementation scored an average
of 28.38%, which is slightly better. At its highest difference (when
underperforming), the accuracy is about 1.89% (HMD) than the
original model, which is slightly worse. In comparison, its lowest
difference (not counting BM) would be 1.44% (UWave). At its high-
est difference (when succeeding), the accuracy is 6.23% (NATOPS),
which exceeds any difference within underperformance. While at
its lowest difference, the accuracy is 0.45%. Overall, the proposed
method succeeds in maintaining a similar or even better accuracy
than the original. However, this assessment does not account for
the speed.

6.3.2 Efficiency: The average execution time across five times ex-
periments per dataset is shown in (Table 2), and the boxplot of
the accuracy is shown in Figure 2(b). The best performing dataset
in terms of speed, would be NATOPS (Table 2), where our imple-
mentation finished its training with an average of 16.79 seconds,
while the original’s average training time was 20.88 seconds. The
worst performing dataset would be AWR (Articulary Word Recog-
nition). AWR had the highest training time for both the proposed
implementation and the original, having a training time of 329.07
seconds for our implementation versus 364.85 seconds for the orig-
inal. Although a notable difference in training times would be the
ChartacterTrajectories dataset, where our implementation had a
time of 166.80 seconds while the original had 344.98 seconds. This
is a drastic difference when comparing both speed and accuracy
since it performed very well while scoring a higher accuracy than
the original. Notably, the speed for the proposed implementation
always performed better than the original regardless of the dataset.
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(a) Vs. Execution Time (b) Vs. Performance

Figure 2: Comparison of speed and accuracy between the original TS2Vec model (left) and our proposed model (right) for different datasets.

Proposed Original
Dataset Speed (s) Accuracy Speed (s) Accuracy

BasicMotions 19.00 100% 23.67 100%
ArticularyWordRecognition 329.07 68.87% 364.85 70.67%
UWaveGestureLibrary 23.03 47.50% 31.31 48.94%
CharacterTrajectories 166.80 92.27% 344.98 91.82%
NATOPS 16.79 69.67% 20.88 63.44%
HandMovementDirection 28.88 26.49% 43.24 28.38%
Table 2: Average Execution Time and Accuracy, Proposed Vs. TS2Vec

6.4 Embedding Visualization
To better understand the performance of our proposed modifica-
tions to the TS2Vec model, we visualize the embeddings generated
by the model during the training process. TS2Vec generates two
types of embedding - average pooling and without pooling, which
we call flattened embedding. These are both high-dimensional,
so to make sense of them visually, we used t-SNE (t-Distributed
Stochastic Neighbor Embedding)[17], a powerful technique for
dimensionality reduction particularly well suited for visualizing
high-dimensional datasets.

We tested with six datasets to illustrate our model’s ability to
capture the inherent structure and relationships in the data.

We test two situations, global average pooling embedding, and
without pooling embedding (flatten).

6.4.1 Average Pooling Embedding: For each dataset, we extract
the average pooling embedding produced by the final layer of our
model at the end of the training. We then apply t-SNE to reduce
the dimensionality of these embeddings to two dimensions.

In the two-dimensional scatter plots, each point corresponds
to a time series in the dataset, and the point’s color indicates the
class of the time series. The proximity of points in the plot reflects
the similarity of their corresponding time series, as learned by the
model through average pooling.

6.4.2 Without Pooling (Flatten) Embedding: We also visualize the
embedding without pooling generated by the model. Similar to

the average pooling embedding, we apply t-SNE to the flattened
embedding and plot the resulting two-dimensional representation.

For both models in their average pooling and flatten embeddings,
we observed that in the BasicMotions, and CharacterTrajectories
datasets, the time series from different classes form distinct clusters,
which indicates our model has effectively learned to differentiate
between the classes in this dataset effectively.

We noticed the class separation is less pronounced for datasets
such as ArticulatoryWordRecognition, UWaveGestureLibrary, Hand-
MovementDirection, and NATOPS, reflecting these datasets’ greater
complexity and diversity.

However, even with the original TS2Vec, both model’s accuracy
is not too compromised, and our proposed method can work with
these datasets at a faster speed, as is the case with CharacterTrajec-
tories, which sees a slight improvement in its accuracy but manages
to go through the datasets at a 50% faster rate. As a result, the vi-
sualizations in Figure 2 provide evidence that our modifications to
the TS2Vec model maintain its ability to learn useful representa-
tions of time series data. Furthermore, they offer a valuable tool for
interpreting the model’s behavior and diagnosing any issues that
may arise during training.

7 CONCLUSION
In this paper, we presented a method to improve the computational
efficiency of the TS2Vec model, a state-of-the-art model for time
series representation learning. Our method involves the use of
adaptive resolution setting in the model’s loss function, which
allows us to reduce the computational load of the training process
without sacrificing the model’s performance.

Our experimental results confirm that our proposed method
is effective. Our model achieved similar or better classification
accuracy in a range of datasets compared to the original TS2Vec
model while consistently reducing training time. These findings
suggest that our method can be a valuable tool for researchers and
practitioners working with large-scale time series data.
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(a) BM TS2Vec
(avg pool)

(b) BM Proposed
(avg pool)

(c) BM TS2Vec
(flatten)

(d) BM Proposed
(flatten)

(e) AWR TS2Vec
(avg pool)

(f) AWR Proposed
(avg pool)

(g) AWR TS2Vec
(flatten)

(h) AWR Proposed
(flatten)

(i) UWave TS2Vec
(avg pool)

(j) UWave Proposed
(avg pool)

(k) UWave TS2Vec
(flatten)

(l) UWave Proposed
(flatten)

(m) CT TS2Vec
(avg pool)

(n) CT Proposed
(avg pool)

(o) CT TS2Vec
(flatten)

(p) CT Proposed
(flatten)

(q) NATOPS TS2Vec
(avg pool)

(r) NATOPS Proposed
(avg pool)

(s) NATOPS TS2Vec
(flatten)

(t) NATOPS Proposed
(flatten)

(u) HMD TS2Vec
(avg pool)

(v) HMD Proposed
(avg pool)

(w) HMD TS2Vec
(flatten)

(x) HMD Proposed
(flatten)

Figure 3: Visualizing embedding instances via t-SNE [17].
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