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ABSTRACT

To support undertrained instructors in introductory computer sci-
ence classes, we proposed an automated evaluator (autograder)
for Snap!, a block-based programming language whose colorful
visual interface is more beginner-friendly. Our approach is not only
novel in working natively on a non-textual language but also in
its assessment of the computational thinking (CT) reflected in the
structure of a student’s submission rather than the accuracy or
run-time of its execution. This relies on assessing demonstrated
knowledge of abstraction and iteration from an XML tree repre-
sentation of a student’s Snap! program. Approaches supported by
literature involve clustering trees with similar structures together;
however, methods such as path matching were too generalized and
inadequate at reflecting specific CT elements. To this end, we ex-
plore how to tailor our feature extraction to capture such elements,
including consecutive repetition and encapsulation of functional
blocks. Unlike proprietary autograders, our approach integrates the
academic community into the research and development of the op-
timal feature embedding of Snap! programs; thus, we present both
successful and unsuccessful endeavors to inform replications of this
work. We also highlight avenues for feature tuning and scalability
of the autograding model to larger, more diverse classrooms.
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1 INTRODUCTION

Inadequate diversity in introductory computer science education,
coupled with a shortage of technically trained instructors, presents
significant barriers to learners in under-served areas [5]. Research
suggests that incorporating media into computer science educa-
tion can appeal to a broader audience and motivate students from
such backgrounds to learn [4]. In line with this, we launched our
MakeToLearn course in which novice coders learn programming
using TuneScope, a music analysis and synthesis tool integrated
into Snap! [1].

In this paper, we analyze how our rubric would evaluate an
example program to understand the CT concepts we seek to capture
in our features. A student’s first attempt at a Snap! program that
draws an equilateral triangle may look like Fig. 1, which contains
repeated commands to draw a side and turn at the top level of code.
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Figure (1) A naive approach to drawing a triangle

This is solved by encapsulating a "subblock" to handle an ele-
mentary function like drawing just one side, as shown in Figure 2.
If a new instruction were needed before each side was drawn, this
line would now only need to be added in one spot. This subblock
can be used repetitively, but students would get algorithm points
for placing it within an iteration. In this optimal version, modifying
a parameter (e.g., side length) would only require an edit at one
position.
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draw side steps degrees

(c) Switch to a loop for efficiency

Figure (2) A abstracted and efficient approach to drawing a triangle

This approach improves debugging efficiency and teaches pro-
gramming concepts in a proactive, CT-conscious manner. The in-
tuition behind the feature embedding, thus, lies in capturing the
repetition and nested structure within each level of a student’s
code. Instructors provided personalized feedback on each assign-
ment, addressing issues such as code redundancy or inadequate
encapsulation. Although the data showed a highly positive effect
on learning engagement and CT comprehension, the expansion of
this course setup is limited by the availability of staff with adequate
expertise and input [10].

To address these limitations, we’re pursuing an autograder that
provides personalized CT feedback to student submissions in a scal-
able manner. While autograders for programming assignments typ-
ically focus on run-time efficiency and output accuracy, effectively
assessing students’ CT skills requires evaluating coding best prac-
tices, including decomposition, abstraction, and algorithm design.
While autograders are commonly used for text-based languages
like Python, this work furthers efforts to extract meaningful CT
features from originally block-based XML code data.

2 RELATED WORK

This model’s potential pedagogical applications were previously
presented to an audience of computer science educators by Damle
et al. [2]; however, this report focuses on the techniques of data
discovery and feature engineering involved in the process.

Previous studies have demonstrated that textual code can be
effectively embedded in low-dimensional space with minimal train-
ing data [6-8, 11]. However, this relied on moving the model’s
cursor to positions in text containing incorrect syntax, a type of
error that’s almost impossible with Snap!’s prefabricated blocks.
Furthermore, the abstracted deep learning approach black-boxes
the feature extraction from human comprehension, hampering our
ability to inform our data transformation a priori.

The design of our model was influenced by Piech et al’s work [8],
which successfully grouped code based on similarity in a scalable
manner. The similarity measure here relied on functional testing of
code output; in contrast, TuneScope assignments produce multime-
dia artwork without a predefined "correct” answer. Therefore, our
grouping problem differs by treating the CT reflected in the code
style as our target variable.

A notably similar project was created by the DrScratch team [3],
whose model works on block-based language Scratch and assesses
a variety of CT criteria. Many of the more advanced items (e.g.
Parellelization, Synchronization, Flow Control) lie outside the scope
of introductory computer science, and there’s no clear metrics or

syllabus provided for how DrScratch assesses the criteria relevant to
this study. In general, the proprietary and undocumented nature of
alternatives in the space call for an academia-facing autograder for
Snap! whose primary goal is to produce the best tool for instructors
while contributing to tree-based data science research.

3 METHODS

At the University of Virginia, we designed a course centered around
Computational Thinking (CT) using a block-based programming
language, Snap!, to teach novice programmers computer science
fundamentals. The course is taught as an elective in the education
department and is split into two main parts: art and music. First,
students use the platform to replicate famous artists’ styles using
code, and then incorporate CS fundamentals and computational
thinking into composing melodies and chord progressions to create
multi-tracked songs, fully controlling instrument choice, volume
levels, panning, and tempo.

Throughout the course, 13 students were exposed to structured,
personalized instructor feedback on code submissions for 8 assign-
ments. Each review consists of integral scores between 0 and 2 for
abstraction, algorithms, data representation, and documentation
from each reviewer, as well as an in depth textual response from a
single reviewer providing constructive feedback and examples to
the student. The dataset for this study comprises of Snap! assign-
ments (as XML files) written by students in our course who were
new to coding, along with the numerical score vectors from each
reviewer and a text field for the personalized review.

Fundamentally, our autograder would compare the structure of
the XML representation of each program to structures that both
demonstrate and fail to demonstrate CT. Following the literature,
this requires a clustering model that will use measures of "simi-
larity" that correspond to CT to simultaneously apply feedback to
large groups of submissions. The model’s ability to cluster similar
programs relies on both features that effectively allow the emer-
gence of encapsulation and repetition patterns and a clustering
algorithm that groups feature vectors similar to the manual rubric.
Therefore, we conduct a study with a scan of possible features
and a survey of popular clustering models with an analysis of the
observed improvement of cluster proximity.

3.1 Tree-Based Features

Since the underlying format for Snap! programs is an XML tree,
where sequential children of a parent node represent the script
nested within the parent code block, the first features we extracted
were focused on the structure of a generalized tree (e.g. average
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Figure (3) Sliding 1D filter for measuring repetition
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Figure (4) From top left, clockwise: student submissions
plotted across highest PCA components colored by abstrac-
tion, algorithms, data representation, and documentation
score

and maximum children per parent node, average and maximum
depth of each child node). These were primarily numerical for ease
of conceptual understanding and clustering familiarity, however
methods exist to match higher-dimensional aspects of trees together,
such as PathXP [9], which creates "profiles” of trees based on shared
parent-child paths. Such an approach was not scalable since new
path profiles would need to be compiled and measured across the
entire dataset for every additional tree encountered.

3.2 Repetition

For measuring repetition, we invented a 1-dimensional convolution
for Snap! programs, where a “filter” consisting of increasing sections
of code blocks slides over the remainder of the code in Figure 3. All
matching occurrences of the filter are tallied up to get a repetition
score. In the example shown, a filter consisting of the blocks move
50 steps and turn 120 degrees is not matched one block below,
but then matched 2 blocks below. After the tally of all such 2-block
matches is collected, the process restarts with a filter size of 3, and
so on, until the length of the script is reached as one big filter.

Block matches represent students repeating whole sections of
code where they could have abstracted often-used functions and
iterated often-repeated instructions. Note, just like in our other
methods, the actual blocks (functions) in use matter less than how
redundantly the student used them.
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Figure (5) K-means clusters of student submissions

3.3 Feature Analysis

Our feature set focused on abstraction and algorithms, as data repre-
sentation and documentation were not reflected in a tree structure.
However, as shown in Figure 4, decomposing the feature vectors
into the first two principal components and then comparing each
point to its manual scoring showed greater spatial variance in the
documentation and data representation than abstraction and algo-
rithms as we had intended. This indicates an area of improvement
for clever feature engineering, discussed in the Conclusion.

3.4 K-means Clustering

Despite the need for better feature embedding, we explore the op-
tions for clustering, starting with the most popular choice, K-means
clustering. At first, proximity was an evenly-weighted L2 norm
between feature vectors, and the inertia of a cluster assignment
was the sum of squared error (SSE) across all points. As depicted
in Figure 5, the optimal clustering had an “elbow” of 5 clusters
for balancing low clusters with low inertia, and the corresponding
clusters are plotted across features corresponding to our Repetition
convolution and Average Unique Children per Parent Node.

The reasoning for plotting these two features is rooted in a grid
search across feature importance. Every combination of weights
between 0 and 1 (in 5 increments) was applied to each feature, where
a higher weight means the feature impacted cluster proximity more.
In Figure 6, the combinations of weights on every pair of features
were plotted based on the resultant cluster inertia (averaged across
multiple runs to minimize randomness). This grid search showed
high weighting (1.0) on Repetition, and Average Unique Children
features consistently produced lower cluster inertia, which should
inform potential features moving forward.

3.5 Other Algorithms

For completeness, we compared a suite of other popular clustering
algorithms to examine their potential in XML-extracted data. DB-
SCAN produced highly irregular inertia dependent on initialization
and hyperparameter tuning, and always marked most of the points
as noise, indicating data points were not spatially dense (as shown
in Figure 7).

A Gaussian Mixture Model consistently separated the feature
space into 2 clusters, generally distinguishing code with low and
high Repetition (as shown in Figure 8).

Hierarchical clustering, shown in the dendrogram in Figure 9,
also suggests 2 or 3 clusters, as the average height (variation be-
tween clusters) of the topmost (blue) tree is significantly higher
than the other branches.
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Figure (6) Grid search across inertia dependent on all com-
binations of feature weighting (select plots shown)
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4 EXPERIMENTAL RESULTS

Our benchmark for model performance would first require a signif-
icant overlap with numerical score vectors before we can pursue a
model that provides human-like feedback.

Inertia, as described in Section 3.4, alone lacks a frame of ref-
erence for the error and would thus be an inaccurate measure of
comparison between differently-weighted clustering runs. To this
end, we introduce a metric for relative inertia, or error between
each point and its cluster centroid, relative to the error to the closest
alternative centroid (Equation 1). If each point was assigned to the
appropriate cluster, the relative inertia would be less than 1; optimal
clustering would achieve as close to 0 relative inertia as possible.

(X — pu)?
minjup (X — p;)?

)

By clustering based on our embedded features and then measur-
ing relative inertia across our manual scoring vectors, we hoped to
assess which model best clustered according to our rubric before
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Figure (9) Hierarchical clusters of student submissions

we applied text feedback. This format evaluates the training of the
model on our engineered features (training data) using the verified
CT scores provided by our instructors (validation/testing data). The
relative inertia scores are compiled in Table 1.

Table (1) Relative Inertia of Various Clustering Algorithms

Methods Relative Inertia
K-Means 3.2627
DBSCAN 27862
Gaussian 1.0822
HAC (2 clusters) 1.0481
HAC (3 clusters) 1.2021

Although Figure 10 shows a loose visual distinction in clustering
for different manual CT scores in K-Means or Gaussian clustering
individually, the near-1 relative inertia of Gaussian and Hierarchical
models from Table 1 indicates the potential of a suite of models, each
devoted to only one rubric item (such as a model only identifying
repetitive algorithms).

Limitations. Drawbacks of our autograding model (compared
to human graders) include lacking the ability to point out specific
blocks the student created as areas of improvement, create personal-
ized alternative coding solutions, and appreciate the artistic output
of multimedia programs. With recent attention towards ChatGPT,
we believe synthesized text tools, trained on personalized human
feedback, could provide such tailored responses to new submissions.
An alternate approach could include labeling generatively (by creat-
ing example code with common pitfalls, and then clustering actual
submissions based on feature similarity). This might apply domain
knowledge of how students typically think more easily [12]. As of
today, over 45% of the class is comprised of female students, and the
class boasts a 100% retention rate. In addition to the autograders,
we would like to gather additional data from the creators of Snap!,
who have graciously offered their insight and feedback on student
submissions via the Snap! forum.
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Figure (10) Plot of Algorithms score vs Abstractions score of each submission by K-Means (left) and Gaussian (right) clustering

5 CONCLUSION

This report introduces specific features that can be extracted from
an XML representation of a Snap! program to capture patterns of
encapsulation and repetition, as well as a convolution designed
specifically for block-based code that measures redundancies in a
student’s script. Analyzing a variety of clustering algorithms in-
dicates that rather than a density-based approach, models should
consider only proximity between the submission at hand and other
submissions that exemplify certain traits. Near-optimal relative
inertia measures suggest the potential for general clustering algo-
rithms to be used with feature vector representations of higher
dimensional program data.

Our goal is to apply our model in the classroom and tune it as
a proof-of-concept for our use case. This tuning mostly involves
better-capturing domain knowledge about common student pitfalls
in feature extraction. The crux of the problem moving forward
will be finding this optimal embedding of block-based code that
best distinguishes and clusters differently- and similarly-structured
programs, respectively. Although prior work [8] describes auto-
matically learning this embedding, a specific formula or algorithm
would be useful in a variety of applications that capture patterns in
tree-like data. Once functional, we seek to generalize the model to
provide the desired scalability to multiple classrooms and, results
permitting, clustering of tree-like data in other domains.
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Figure (11) Compact representation of XML Snap! program

6 REPRODUCIBILITY

We’ve published a Google Colab Python Notebook that demon-
strates how to parse Snap! programs for their structure, script, and
metadata. The notebook is viewable online at https://colab.research.
google.com/drive/1cdyqz0juK1hnQW4-mKbc2woiiMhpZUWt?usp=
sharing. Actual student code and manual feedback is not provided,
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but interested persons can find publicly available programs on the
Snap! website (https://snap.berkeley.edu/).

The main module that allows users to work with XML data in
Python is etree. Since Snap! programs contain a lot of overhead
and metadata, code is already in place to reduce the XML program
to a custom CodeBlock object, which you can tune to fit your needs.
For the purposes of measuring block redundancy in this project, we
only kept the name of the function block. Figure 13 shows a print
of a sample TuneScope program in this format, where text inside
the square brackets [] represents nested code and the underscore _
represents an omitted parameter value.

The provided notebook also includes a framework for users to
add their own feature extraction functions (provided that the re-
sulting data format is one numerical feature vector per student
submission) and run the analyses provided in this report, including
clustering with a suite of models, grid search over feature impor-
tance, and (provided a properly formatted matrix of scores) plotting
of clustered data on a 2D score plot.

Proper formatting of a score dataset would be one row per sub-
mission, with the following fields:

o filename: the name of the XML file corresponding to the
project (omitting the .xml extension), located within the
base_path_xml folder specified at the top of the notebook)

o r#_CAT: the reviewer score of this project, where # is the
reviewer number (setup as 1-3 in the notebook) and CAT
is the criteria category, which in the notebook is given as
abstraction, algorithms, documentation, and data represen-
tation.

Users can also include a text file containing the names of any
code blocks that are common across many submissions or part of a
library, which Snap! often lists as custom blocks when imported,
so that they are not factored into the analysis.
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