
Sensor Placement for Learning on Networks
Arnav Burudgunte

ab141@rice.edu

Rice University

Houston, Texas, USA

Arlei Silva

arlei@rice.edu

Rice University

Houston, Texas, USA

ABSTRACT
Large infrastructure networks (e.g. for transportation and power

distribution) require constant monitoring for failures, congestion,

and other adversarial events. However, assigning a sensor to every

link in the network is often infeasible due to placement and mainte-

nance costs. Instead, sensors can be placed only on a few key links

and machine learning algorithms can be leveraged for the inference

of missing measurements (e.g. vehicle speeds, power flows) across

the network. This paper investigates the sensor placement problem

for networks. We first formalize two versions of the problem under

flow conservation and smoothness assumptions and show that it is

NP-hard to optimally place a fixed set of sensors. Next, we propose

efficient and adaptive greedy heuristics for sensor placement that

scale to large networks. Our experiments, using datasets from real-

world application domains, show that the proposed approaches

enable more accurate inference than existing alternatives from the

literature. We demonstrate that considering even imperfect or in-

complete ground-truth estimates can vastly improve the prediction

error, especially for a small number of sensors.

CCS CONCEPTS
• Computing methodologies → Semi-supervised learning
settings; • Theory of computation→ Network flows.

KEYWORDS
network flows, semi-supervised learning, graphs, labels

ACM Reference Format:
Arnav Burudgunte and Arlei Silva. 2023. Sensor Placement for Learning on

Networks. In Proceedings of (KDD Undergraduate Consortium ’23). ACM,

New York, NY, USA, 8 pages. https://doi.org/X

1 INTRODUCTION
This paper addresses the problem of estimating edge measurements

in networks. Given a value at each edge, our goal is to choose a set

of edges to monitor in order to infer values at unmonitored edges.

Versions of our problem are motivated by infrastructure net-

works, such as traffic [15], water [19], and power [27] networks.

We assume that each edge in the network has some associated

value (e.g. traffic flow, water flow, electrical current) that must be

measured to track congestion, anomalies, and other events. Owing

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD Undergraduate Consortium ’23, August 7, 2023, Long Beach, CA
© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/X

to the size of the network and measurement cost, we often cannot

place a sensor at every edge. A common solution is to place sensors

at a small subset of the edges, and estimate the rest using semi-

supervised learning [15, 34, 39]. Because the choice of this subset

can seriously alter the prediction quality, our goal is to efficiently

select a subset that yields the most accurate estimate.

We consider two versions of the sensor selection problem de-

pending on the measurement of interest. Flow conservation concerns
values such as vehicle counts in a road network or power flow in

electrical networks [15], which follow the principle of flow conser-

vation, meaning the sum of flows into a vertex is (approximately)

equal to the sum of flows out of it. The smoothness version concerns

smooth measurements such as traffic speeds and electrical volt-

age [2] in which values are not necessarily conserved, but where

the measurement at a given edge are expected to be similar to the

measurements at nearby edges.

The sensor placement problem is related to active learning, in

which a machine learning model iteratively makes requests for

specific observations to be labeled. Active learning algorithms gen-

erally assume that unlabeled observations are never known unless

directly queried; models must choose the next labeled observation

based only on the network topology [15] and previously-queried

observations. Such algorithms begin with no information about

the ground-truth labels and slowly learn more about the network

as they label the data. In practice, however, we often have outside

information about the edge labels before placing any sensors. For

example, urban planners often have detailed predictions for traffic

flow based on traffic demand models, spatial and temporal data,

and other factors [1, 20, 23]. Such estimates can be extremely useful

for inferring labels with a small number of sensors because they

significantly constrain the possible solutions—there might be many

possible predictions that satisfy the flow conservation or smooth-

ness assumptions, but only a few will correctly predict the volume

of traffic at major roads. As we will show, even an imperfect esti-

mate of edge values can generate a more effective choice of sensors

than a naive algorithm which makes predictions based solely on

flow conservation or smoothness assumptions. The question we

address in this paper is how to use existing knowledge of edge values
(or flows) to improve our predictions.

Our work combines knowledge of the network topology and

ground-truth values to choose an optimal placement of sensors. We

summarize the main contributions of our work as follows:

• We provide a formal statement of the sensor placement prob-

lem under both flow conservation and smoothness, with a

proof that both problems are NP-complete;

• We propose greedy heuristics as efficient solutions for both

versions of our problem;

• We present experimental results showing our approach’s

improvement over existing baselines.

https://doi.org/X
https://doi.org/X

KDD Undergraduate Consortium ’23, August 7, 2023, Long Beach, CA Arnav Burudgunte and Arlei Silva

2 RELATEDWORK
Graph-Based Semi-Supervised Learning. Semi-supervised

learning (SSL), in which models learn from both labeled and unla-

beled data, is motivated by applications where the availability of

labeled data is limited [32, 37]. Graph-based SSL is a special case

of SSL where observations can be encoded as vertices and edges

represent relations between them [39]. Label propagation [37, 38]

is the most popular technique for reconstructing smooth values.

More recently, flow-based SSL [15] was proposed to infer conserved

flows on the edges rather than smooth vertex labels. However, both

the conservation- and smoothness-based solutions can be highly

dependent on the choice of labeled edges and the nature of the

data [15, 37], which is a motivation for our work. We focus on the

problem of selecting edges to be labeled (or sensor locations, in

the case of infrastructure networks), which is a special case of the

active learning problem [28]. With the exception of [15], combining

active learning with SSL has been studied from the smoothness

perspective, largely as a graph coverage [10] or sampling (signal

processing) [9] problem. In these scenarios, the choice of nodes or

edges is made using only the network topology, and thus cannot be

optimized using the ground-truth values [10, 15]. Here, we assume

that edges are chosen by optimizing a reconstruction loss. We show

that this approach allows us to match the performance of existing

baselines using far fewer sensors.

Traffic Forecasting. The problem of forecasting traffic flows,

speeds, and other attributes is can be motivated by smart city ap-

plications. Early attempts at traffic prediction infer network flows

from a set of origin-destination pairs [1] or vice versa [13]; the

popular traffic simulator SUMO [23] operates using a similar prin-

ciple. More recently, deep learning has been leveraged to predict

traffic as a function of spatial and temporal data [20, 26, 30]. The

relevant result for our work is that there are sophisticated, accurate

models available for predicting traffic flow in graphs even without

labels from sensors. We show that even when such estimates are

noisy or imperfect, they provide useful information about ground-

truth flows. We focus on the spatial dimension of the problem and

use simpler inference models such as label propagation, but our

algorithms could be generalized to use any forecasting model.

Sensor Placement and Influence Maximization. Previous
work has studied sensor placement for other objectives such as

monitoring spatial phenomena [17] and detecting contaminants in

water distribution networks [18, 19]. Similar to these problems, we

study sensor placement as a combinatorial optimization problem,

though we minimize a prediction error rather than a fixed penalty

function. Closely related to the sensor placement problem is the

problem of influencemaximization, which asks for the best subset of

nodes to target for influence such that after some diffusion process,

the maximum number of nodes have been influenced [16]. Solutions

often depend on the diffusion model, which predicts the number

of nodes affected by the chosen seed set [21]. Instead of using a

process, we apply a machine learning model to make predictions

based on a validation set (i.e. set of edge observations). Moreover, we

notice that, although we apply similar greedy algorithms as those

previously used for sensor placement and influence maximization,

our objective functions are not submodular [24].

3 PROBLEM DEFINITION
3.1 Preliminaries
We represent a network as an unweighted graph 𝐺 = (𝑉 , 𝐸) with a

set 𝑉 of 𝑛 vertices and set 𝐸 of𝑚 edges. The graph is represented

by the adjacency matrix A ∈ R𝑛×𝑛 , where A𝑖 𝑗 = 1 if an edge exists

between vertices 𝑖 and 𝑗 and A𝑖 𝑗 = 0 otherwise.

We are interested in the value given by vector x ∈ R𝑚 where x𝑖
is the value (either conserved or smooth) at edge 𝑖 . We represent

the values of a subset 𝐸 ′ ⊂ 𝐸 as a vector x𝐸′ ∈ R |𝐸
′ |
. In the rest of

this paper, we use f and x to denote conserved and smooth values,

respectively. Thus a set of labeled (sensor) edges 𝑆 is represented by

the corresponding value x𝑆 ∈ R |𝑆 | , and a set of unlabeled (target)

edges 𝑇 is represented as x𝑇 ∈ R |𝑇 | .
Though previous work [37] has considered the smoothness as-

sumption as a property of vertices, we view both versions as edge

problems. We show in Section 4.1 how the smoothness assumption

can be translated to edges.

3.2 General Sensor Placement Problem
Prediction of conserved and smooth values can be represented

within the same two-part framework. The first part is predicts the

values of unlabeled edges based on a given set of sensors and the

assumption. The second is choosing a set of sensors that yields the

prediction with the lowest error. We formalize both parts here.

3.2.1 Prediction. Given a labeled set of sensors 𝑆 (|𝑆 | = 𝑘) and

corresponding observed smooth values x𝑆 ∈ R𝑘 , we produce an
estimate x̂ for x via graph-based semi-supervised learning. The

same holds for conserved values f𝑆 ∈ R𝑘 .

3.2.2 Sensor Placement. Given a set 𝑇 of target vertices, a set 𝐶

of candidate vertices, and budget 𝑘 , our problem is to choose the

subset of 𝑘 vertices in 𝐶 that yields the best prediction for 𝑇 :

𝑆∗ = argmin

𝑆⊆𝐶, |𝑆 |=𝑘
| |x̂𝑇 − x𝑇 | |22

s.t. x̂𝑇 = 𝜙 (x𝑆 , 𝑆)
(1)

where 𝜙 is the prediction model for smooth values (see Section 4.1).

The same problem can be defined for conserved flows f .

3.3 Hardness
The conserved and smooth versions of our problem are both NP-

complete. We give the proof for conservation here.

Definition 3.1 (The Sensor Placement Problem). Given a graph𝐺 , a
candidate set of edges𝐶 ⊆ 𝐸, a target set of edges𝑇 ⊆ 𝐸, a budget 𝑘 ,
and an error 𝜖 , SENSOR(𝐺,𝐶,𝑇 , 𝑘) consists of determining whether

there exists a set of edge labels 𝑆 ⊆ 𝐶 such that |𝑆 | = 𝑘 and the edge

predictions f̂ for 𝑆 (see Equation 1) have an error | |f̂𝑇 − f𝑇 | | ≤ 𝜖 .

Theorem 3.2. The Sensor Placement Problem (SENSOR) is NP-
complete.

Proof. Given a certificate 𝑆 ⊆ 𝐶 of edges selected as sensors,

we can clearly compute f̂ and check the error in polynomial time.

Let SUM (𝑋, 𝑡) be an instance of the subset sum problem for a finite

set 𝑋 ⊆ Z+ and 𝑡 ∈ Z+. The problem is to find a subset 𝑋 ′ ⊂ 𝑋
such that

∑
𝑥 ∈𝑋 ′ 𝑥 = 𝑡 . This problem is NP-hard [5].

Sensor Placement for Learning on Networks KDD Undergraduate Consortium ’23, August 7, 2023, Long Beach, CA

Figure 1: Reduction from SUM to SENSOR, with 𝑋 = {3, 4, 6}
and 𝑡 = 10. The candidate set 𝐶 = 𝑋 is in blue, and the target
𝑇 = {(𝑡1, 𝑡2)} in red. Choosing the two edges that sum to 𝑡 for
𝑆 generates a perfect prediction for 𝑇 .

We can reduce an arbitrary instance of SUM to SENSOR by con-

structing graph 𝐺 as follows. Create a vertex for each element

in 𝑋 and two additional vertices 𝑡1 and 𝑡2. Add a set of edges

𝐶 = {(𝑥, 𝑡1) : 𝑥 ∈ 𝑋 }, each with a flow equal to 𝑠; an edge (𝑡1, 𝑡2)
with flow 𝑡 ; and set of edges {(𝑡2, 𝑥) : 𝑥 ∈ 𝑋 } each with flow 𝑥 .

Finally, add |𝑋 | vertices with 0 flow into 𝑡1.

There exists a solution to SENSOR(𝐺,𝐶, {(𝑡1, 𝑡2)}, 𝑘) with pre-

diction error 0 if and only if a solution exists for SUM(𝑋, 𝑡). The
equivalence is straightforward: if some set𝑋 ′ sums to 𝑡 , then choose

edges {(𝑥 ′, 𝑡1) : 𝑥 ′ ∈ 𝑋 ′}, whose flows also sum to 𝑡 , as sensors. If

|𝑋 ′ | < 𝑘 , choose edges with 0 flow for the remaining sensors. Since

there is only edge out of 𝑡1, that edge must have flow 𝑡 . Conversely,

if 𝑘 sensors correctly predict the flow on edge (𝑡1, 𝑡2), their edge
flows must sum to 𝑡 , and thus provide a solution to SUM. □

A similar construction can be used to prove that the smooth

version of the problem is also NP-complete. This motivates us to

investigate efficient heuristics for our general problem.

4 METHODS
4.1 Graph-Based Semi-Supervised Learning
We first describe the prediction algorithms used for both the con-

servation and smoothness versions of the problem.

4.1.1 Graph-Based SSL with Conservation [15]. For flow conserva-

tion, we consider the divergence on each vertex 𝑖 , defined as the

difference between flows out of 𝑖 and flows into 𝑖:

div(𝑖) =
∑︁

𝑒∈𝐸:𝑒 out of 𝑖

f𝑒 −
∑︁

𝑒∈𝐸:𝑒 into 𝑖

f𝑒 (2)

Flows for missing edges are estimated by minimizing the sum-

of-squares divergence given by

| |Bf | |2 =
∑︁
𝑖∈𝑉
(div(𝑖))2 (3)

where the incidence matrix B ∈ R𝑛×𝑚 is defined as

B𝑖 𝑗 =


1 if edge 𝑒 𝑗 enters node 𝑖

−1 if edge 𝑒 𝑗 leaves node 𝑖

0 otherwise.

(4)

For undirected graphs, we first choose an arbitrary orientation

for each edge before constructing B. We then minimize the sum of

the divergence and a regularization term parameterized by 𝜆 ∈ R+:

f̂∗ = argmin

f̂ ∈R𝑚
| |Bf̂ | |2 + 𝜆2 · | |f̂ | |2

s.t. f̂𝑆 = f𝑆
(5)

where 𝜆 guarantees that the solution is unique. For directed graphs,

we additionally impose the constraint that f̂𝑖 ≥ 0,∀𝑖 .
The resulting optimization problem can be rewritten as a reg-

ularized least squares problem for computation. Define f0 ∈ R𝑚
such that f0

𝑖
= f𝑖 if 𝑖 ∈ 𝑆 and f0

𝑖
= 0 otherwise. Moreover, let

H ∈ R𝑚×(𝑚−𝑘) be a matrix (map) such that H𝑖 𝑗 = 1 if flow f𝑖 maps

to (f𝑇) 𝑗 (i.e., they correspond to the same edge). The regularized

least-squares formulation is

f∗𝑇 = argmin

f𝑇 ∈R𝑚−𝑘
| |BHf𝑇 − Bf0 | |2 + 𝜆 | |f𝑇 | |2 (6)

where the vector f𝑇 is constrained to non-negative entries in the

case of directed graphs [4].

4.1.2 Graph-Based SSL with Smoothness [37]. For edge smooth-

ness, we turn the original graph𝐺 into a line graph 𝐿(𝐺) = (𝑉 ′, 𝐸 ′),
where edges in𝐺 become vertices in𝑉 ′ and adjacent edges in𝐺 are

connected by edges in 𝐸 ′. Smoothness is based on edge gradients:

𝑔𝑟𝑎𝑑 (𝑖, 𝑗) = x𝑖 − x𝑗 (7)

where (𝑖, 𝑗) ∈ 𝐸 ′.
Missing values are estimated by minimizing the squared differ-

ences between values for each vertex and its neighbors in 𝐿(𝐺):

x𝑇 Lx =
∑︁
(𝑖, 𝑗) ∈𝐸′

(𝑔𝑟𝑎𝑑 (𝑖, 𝑗))2 (8)

where L ∈ R𝑚×𝑚 is the Laplacian of 𝐿(𝐺):

L𝑖 𝑗 =


deg (𝑖) if 𝑖 = 𝑗

−1 if 𝑖 ≠ 𝑗 and nodes 𝑖 and 𝑗 are adjacent

0 otherwise.

(9)

As in the conservation case, the above optimization problem

can be formulated via least-squares. Let D be the degree matrix,

which is a diagonal matrix with D𝑖𝑖 = 𝑑𝑒𝑔(𝑖). Then P = D−1A is a

transition matrix and L = D−1L = I − P is a normalized Laplacian

matrix. Moreover, let H and x0 be defined in the same way as H
itself and f0 were defined in the previous section. The resulting

least-squares formulation is

x∗𝑇 = argmin

x𝑇 ∈R𝑚−𝑘
| |HTLHx𝑇 − HTPx

0 | |2 (10)

The similarity between the SSL predictors under conservation

and smoothness has several interesting implications. For instance,

it suggests an iterative SSL algorithm for conserved flows that is

similar to label propagation [37]. Moreover, it supports the design

KDD Undergraduate Consortium ’23, August 7, 2023, Long Beach, CA Arnav Burudgunte and Arlei Silva

of efficient iterative sensor placement algorithms based on repeated

solutions of least-squares problems as new sensors are added. This

is the topic of the next section.

4.2 Sensor Placement Algorithms
We propose greedy algorithms for the sensor placement problem

under the assumptions of flow conservation and smoothness.

4.2.1 Algorithm for Conserved Flows. Given our hardness result

(see Section 3.3), we propose a greedy algorithm that iteratively

selects the sensor that minimizes the prediction error in Equation 1.

The pseudocode is given in Algorithm 1. At each of the 𝑘 iterations

(lines 2-11), the algorithm selects the best new sensor 𝑠∗ based on

its resulting prediction error 𝜖 (lines 6-10).

The flow prediction problem is not submodular [24]—a single

badly placed sensor can sometimes generate aworse prediction than

no sensor (e.g. if many edges have near-zero flow). This limits our

ability to prove worst-case approximation results for our algorithm.

In practice, however, it is almost always possible to add a sensor

that decreases the prediction error and thus the problem exhibits

(empirical) diminishing return (see Figure 2). We believe that this

property enables our algorithm to work well in practice.

In terms of complexity, at each of the 𝑘 iterations, our algorithm

evaluates the benefit of every not yet chosen edge in𝐶 . This requires

𝑂 (𝑚) solutions of the least-squares problem from Equation 6. Each

solution can be computed iteratively using LSMR [8] in𝑂 (𝑚2) time,

giving an overall running time of 𝑂 (𝑚4).
This exhaustive search at each iteration of our algorithm is costly

for large values of𝑚. We can reduce the number of required esti-

mates by taking advantage of the problem’s “near-submodularity”—

as more sensors are placed, the benefit from not chosen edges rarely

increases. This allows us to evaluate these benefits lazily [19]. Be-

fore choosing any sensors, we compute the benefit of each edge

and store the results in a heap. At each iteration, we recompute the

benefit of the best remaining edge. If it remains the best, then it is

highly unlikely any other edge can overtake it, and we can choose

that edge without reevaluating any other benefits. This saves up to

|𝐶 | evaluations per iteration.

4.2.2 Algorithm for Smoothness. The simple greedy approach de-

scribed in the previous section does not work aswell for smoothness.

To see why, recall that label propagation is equivalent to iteratively

estimating each vertex in 𝐿(𝐺) as the average of its neighbors [37].
Thus a good sensor placement resembles a good clustering: it should

choose representative vertices from 𝑘 different neighborhoods of

𝐿(𝐺). As is often the case in clustering problems, the optimal solu-

tion is quite different for different values of 𝑘 . The same property

holds for our problem.

Our approach selects each sensor conditionally on the remaining

sensors. We use 𝐾-means clustering [12] as inspiration for the

smooth sensor placement approach with centroids behaving as

sensors. Our solution is described by Algorithm 2. The algorithm

starts with a random initial cluster assignment 𝑆 (line 1) and, at

each iteration, tries to replace a sensor 𝑠 by one of its neighbors

𝑢 ∈ 𝑁 (𝑠) (lines 5-12). The replacement is successful whenever

the reconstruction error decreases (lines 10-12). When no further

improvement is possible, the algorithm terminates.

Algorithm 1: Sensor Placement for Conserved Flows

Input: 𝐺 = (𝑉 , 𝐸); 𝐶,𝑇 ⊆ 𝐸; 𝑘 ≤ |𝐶 |, f ∈ R𝑚 , 𝜆 ∈ R+
Output: 𝑆 ⊆ 𝐶

1 𝑆 ← ∅;
2 for 𝑖 = 1, ..., 𝑘 do
3 𝜖𝑚𝑖𝑛 ←∞;
4 foreach 𝑠 ∈ 𝐶 − 𝑆 do
5 𝑆 ′ = 𝑆 ∪ {𝑠};
6 f𝑇 = 𝜙 (f𝑆′, 𝑆 ′, 𝜆);
7 𝜖 = | |f̂𝑇 − f𝑇 | |22;
8 if 𝜖 < 𝜖𝑚𝑖𝑛 then
9 𝜖𝑚𝑖𝑛 ← 𝜖 ;

10 𝑠∗ = 𝑠;

11 𝑆 = 𝑆 ∪ {𝑠∗};
12 return 𝑆 ;

Algorithm 2: Sensor Placement for Smooth Labels

Input: 𝐺 = (𝑉 , 𝐸); 𝐶,𝑇 ⊆ 𝐸; 𝑘 ≤ |𝐶 |, x ∈ R𝑚
Output: 𝑆 ⊆ 𝐶

1 𝑆 ← 𝑘 randomly chosen edges in 𝐶 ;

2 x𝑇 = 𝜙 (x𝑆 , 𝑆);
3 𝜖𝑚𝑖𝑛 = | |x̂𝑇 − x𝑇 | |22;
4 while not converged do
5 foreach 𝑠 ∈ 𝑆 do
6 foreach 𝑢 ∈ 𝑁 (𝑠) do
7 𝑆 ′ = 𝑆/𝑠 ∪ {𝑢};
8 x𝑇 = 𝜙 (x𝑆′, 𝑆 ′);
9 𝜖 = | |x̂𝑇 − x𝑇 | |22;

10 if 𝜖 ′ < 𝜖𝑚𝑖𝑛 then
11 𝑆 = 𝑆 ′;
12 𝜖𝑚𝑖𝑛 = 𝜖 ;

13 return 𝑆 ;

The hill-climbing approach eventually converges because mov-

ing a sensor always decreases the prediction error, but it may only

find a local minimum. The performance can be improved by con-

sidering a larger set of candidates for each swap (line 6), such as

the 𝑝-hop neighbors of 𝑠 for 𝑝 > 1. In principle, this neighborhood

could be expanded to span the entire graph, but the total cost of

evaluating swaps for a large neighborhood is often prohibitive.

Each iteration of our algorithm makes 𝑂 (𝑘 |𝐶 |) least-squares
predictions. As in the flow conservation case, the least squares

problem in Equation 10 can be solved in 𝑂 (𝑚2) time, giving a total

running time of 𝑂 (𝑚4) per iteration. We find experimentally that

that the algorithm converges in a small number of iterations and

that the degree |𝑁 (𝑠) | of each edge 𝑠 is usually much lower than𝑚.

However, as the solutions for different values of 𝑘 are not nested,

computing placements for different budgets is still not as efficient

as the flow conservation solution presented in the previous section.

Sensor Placement for Learning on Networks KDD Undergraduate Consortium ’23, August 7, 2023, Long Beach, CA

Figure 2: Conserved flow prediction results when flows are
fully-observed for validation purposes (optimal scenarios).
The plots show the correlation between the prediction f̂ and
ground truth flow f . Our greedy heuristic (Greedy) outper-
forms all three baselines in all datasets.

5 EXPERIMENTAL RESULTS
We test our hypothesis that optimizing sensor placement based on

flow values is more effective than choosing sensors based only on

the network topology using real-world traffic networks and flows.

Experimental settings and metrics are discussed in the appendix.

5.1 Flow Conservation
We first evaluate our approach that assumes flow conservation.

We consider two settings. In the first setting, we assume that our

method is able to fully observe flow values to place the sensors,

which is the ideal scenario. Next, we consider a more realistic

setting where flows are unknown—requiring our method to use

proxy values—or only partially known.

5.1.1 Fully-observed flows. In this setting,𝑇 = 𝐶 = 𝐸 in Algorithm

1. We compare our approach to three topology-based baselines:

random selection (Random), recursive bisection (RB) [15], and rank-

revealing QR factorization (RRQR) [3, 15]. Details for all baselines

are provided in the appendix.

Figure 2 shows the correlation between predicted and ground-

truth flows for a varying number of sensors (as a percentage). The

results show that our approach significantly outperforms the base-

lines, especially when the number of sensors is small (20% or less).

The results also show that there is no clear best baseline.

5.1.2 Unknown, Partially Unknown, and Noisy Flows. A possible

objection to the previous setting is that, in real-world applications,

the complete flows are rarely fully-observed. In this section, we

apply our algorithm without such a strong assumption.

Figure 3: Conserved flow prediction results for our method
using fully-observed (Full Graph), synthetic (Synthetic Flow),
and partially observed (Random Subset) flows compared to
the baselines. The number of sensors (𝑘) is fixed at 10% of
the edges. Synthetic flows are not able to effectively guide
the sensor placement but a target set with just 20% of edges
is enough for our method to outperform the baselines.

Synthetic Flows. We generate synthetic flows under the conser-

vation assumption (see Appendix A.1) [15]. The greedy heuristic

is computed using the prediction error on the synthetic flows, and

the resulting sensors are tested on the true flows for the four traffic

networks. The sensor placements based on synthetic flows do not

always outperform the baselines (see Figure 3). This is evidence

that the synthetic flows are not an effective proxy for the real flows.

Partial Data. Here, we assume that we are able to observe

a fraction of edges selected uniformly at random in the network

(e.g. by placing additional temporary sensors). We then apply our

method to place sensors by optimizing the prediction error over

these partially observed edges, in effect restricting the target set 𝑇 .

Results from Figure 3 show that, in most cases, the greedy algorithm

outperforms the topology-based baselines using a small percentage

of labeled edges. This result motivates data-driven schemes for

sensor placement, such as the ones proposed in this paper.

Noisy Estimates. Nowwe consider the setting where our model

has access to noisy estimates of the ground-truth flows (e.g. based

on the macro traffic demand model for a city [33, 36]). For each edge

𝑒𝑖 , we simulate a noisy estimate f𝑖 + 𝜖 with randomly generated

noise 𝜖 ∼ 𝑁 (0, 𝑟𝜎) where 𝜎 is the standard deviation of f and

𝑟 ∈ R controls the amount of noise. Figure 4 shows the correlation

between the predicted and original ground-truth flows for varying

noise levels. Even with large amounts of noise, our approach (Noisy

Flows) outperforms all baselines.

KDD Undergraduate Consortium ’23, August 7, 2023, Long Beach, CA Arnav Burudgunte and Arlei Silva

Figure 4: Conserved flow prediction results for sensor se-
lection based on a noisy estimate of ground-truth flows for
varying noise levels. The number of sensors placed (𝑘) is fixed
at 10% of the edges. The sensor placement is quite robust to
noise target values, outperforming the baselines under noise
levels of up to 2× the standard deviation of the flows.

5.2 Flow Smoothness
We test the sensor selection algorithm under the smoothness as-

sumption using synthetic smooth flow values. Here, we apply the

second-smallest eigenvector of the Laplacian matrix L, which is

known to be smooth but not constant [39]. We then run Algorithm

2 to identify the best placement of sensors. When available, we

apply the flow counts at each edge to weight the prediction error.

As discussed in Section 4.2.2, the algorithm for smooth flows is

much slower than the one for conserved ones, so our results are

based on smaller networks. The results from Figure 6 show that

our method outperforms the baselines for all datasets.

6 CONCLUSION AND ONGOINGWORK
We have proposed an approach for sensor placement for semi-

supervised learning in networks that accounts for ground-truth

values. Our framework accounts for both conserved and smooth

flow values. We show that choosing the optimal solution is NP-hard

and provide effective heuristics for the problem. Our experiments

show that our methods significantly outperform baselines that

account only for the graph topology.

This paper is based on an ongoing project. We will incorporate

more real-world datasets (for traffic flows and power transmission).

Moreover, we will investigate how to speed up the placement eval-

uation using a recursive least-squares algorithm [7, 14]. Finally,

we will investigate how solve the conservation and smoothness

versions of our problem jointly to capture complex patterns [22].

(a) Greedy

(b) Recursive Bisection

Figure 5: Example of sensor placements (in red) using our
heuristic (Greedy) and the recursive bisection baseline for the
Anaheim road network. Edge traffic counts are represented
by edge thickness. Unlike the baseline, our approach targets
a few high-traffic paths.

Figure 6: Smooth flow prediction results for sensor selec-
tion on synthetically generated smooth values. For Anaheim,
the correlation is weighted by edge traffic counts; for other
networks, the correlations are unweighted. Our approach
(Greedy) consistently outperforms the baselines.

Sensor Placement for Learning on Networks KDD Undergraduate Consortium ’23, August 7, 2023, Long Beach, CA

REFERENCES
[1] Hillel Bar-Gera. 2002. Origin-Based Algorithm for the Traffic Assignment Prob-

lem. Transportation Science 36, 4 (2002), 398–417. http://www.jstor.org/stable/

25769124

[2] Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. 2006. Label Propagation

and Quadratic Criterion. In Semi-Supervised Learning. MIT Press. https://doi.org/

10.7551/mitpress/9780262033589.003.0015 arXiv:https://academic.oup.com/mit-

press-scholarship-online/book/0/chapter/353093119/chapter-ag-

pdf/44419226/book_41571_section_353093119.ag.pdf

[3] Tony F. Chan. 1987. Rank revealing QR factorizations. Linear Algebra Appl. 88-89
(1987), 67–82. https://doi.org/10.1016/0024-3795(87)90103-0

[4] Donghui Chen and Robert J Plemmons. 2010. Nonnegativity constraints in

numerical analysis. In The birth of numerical analysis. World Scientific, 109–139.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[6] Joaquim F. Pinto da Costa. 2011. Weighted Correlation. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1653–1655. https://doi.org/10.1007/978-3-642-04898-2_612

[7] Soura Dasgupta and Yih-Fang Huang. 1987. Asymptotically convergent modified

recursive least-squares with data-dependent updating and forgetting factor for

systems with bounded noise. IEEE Transactions on information theory 33, 3 (1987),

383–392.

[8] David Chin-Lung Fong and Michael Saunders. 2011. LSMR: An Itera-

tive Algorithm for Sparse Least-Squares Problems. SIAM Journal on Scien-
tific Computing 33, 5 (2011), 2950–2971. https://doi.org/10.1137/10079687X

arXiv:https://doi.org/10.1137/10079687X

[9] Akshay Gadde, Aamir Anis, and Antonio Ortega. 2014. Active Semi-Supervised

Learning Using Sampling Theory for Graph Signals. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(New York, New York, USA) (KDD ’14). Association for Computing Machinery,

New York, NY, USA, 492–501. https://doi.org/10.1145/2623330.2623760

[10] Andrew Guillory and Jeff A Bilmes. 2009. Label Selection on Graphs.

In Advances in Neural Information Processing Systems, Y. Bengio, D. Schu-
urmans, J. Lafferty, C. Williams, and A. Culotta (Eds.), Vol. 22. Curran

Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2009/file/

90794e3b050f815354e3e29e977a88ab-Paper.pdf

[11] Andrew Guillory and Jeff A Bilmes. 2009. Label selection on graphs. Advances in
Neural Information Processing Systems 22 (2009).

[12] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2001. The Elements of
Statistical Learning. Springer New York Inc., New York, NY, USA.

[13] Martin L Hazelton. 2001. Inference for origin–destination matrices: estimation,

prediction and reconstruction. Transportation Research Part B: Methodological 35,
7 (2001), 667–676. https://doi.org/10.1016/S0191-2615(00)00009-6

[14] Syed Aseem Ul Islam and Dennis S Bernstein. 2019. Recursive least squares for

real-time implementation [lecture notes]. IEEE Control Systems Magazine 39, 3
(2019), 82–85.

[15] Junteng Jia, Michael T. Schaub, Santiago Segarra, and Austin R. Benson. 2019.

Graph-Based Semi-Supervised & Active Learning for Edge Flows. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (Anchorage, AK, USA) (KDD ’19). Association for Computing Machinery,

New York, NY, USA, 761–771. https://doi.org/10.1145/3292500.3330872

[16] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of

influence through a social network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining. 137–146.

[17] Andreas Krause, Carlos Guestrin, Anupam Gupta, and Jon Kleinberg. 2006. Near-

optimal sensor placements: Maximizing information while minimizing commu-

nication cost. In Proceedings of the 5th international conference on Information
processing in sensor networks. 2–10.

[18] Andreas Krause, Jure Leskovec, Carlos Guestrin, Jeanne VanBriesen, and Christos

Faloutsos. 2008. Efficient sensor placement optimization for securing large water

distribution networks. Journal of Water Resources Planning and Management 134,
6 (2008), 516–526.

[19] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne

VanBriesen, and Natalie Glance. 2007. Cost-Effective Outbreak Detection in

Networks. In Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Jose, California, USA) (KDD ’07).
Association for Computing Machinery, New York, NY, USA, 420–429. https:

//doi.org/10.1145/1281192.1281239

[20] Mengzhang Li and Zhanxing Zhu. 2021. Spatial-temporal fusion graph neural

networks for traffic flow forecasting. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 35. 4189–4196.

[21] Yuchen Li, Ju Fan, YanhaoWang, and Kian-Lee Tan. 2018. Influence maximization

on social graphs: A survey. IEEE Transactions on Knowledge and Data Engineering
30, 10 (2018), 1852–1872.

[22] Michael James Lighthill and Gerald Beresford Whitham. 1955. On kinematic

waves II. A theory of traffic flow on long crowded roads. Proceedings of the Royal
Society of London. Series A. Mathematical and Physical Sciences 229, 1178 (1955),
317–345.

[23] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-

Pang Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter

Wagner, and Evamarie Wießner. 2018. Microscopic Traffic Simulation using

SUMO. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE,
2575–2582. https://elib.dlr.de/127994/

[24] George LNemhauser, Laurence AWolsey, andMarshall L Fisher. 1978. An analysis

of approximations for maximizing submodular set functions—I. Mathematical
programming 14 (1978), 265–294.

[25] OpenStreetMap contributors. 2023. Planet dump retrieved from

https://planet.osm.org . https://www.openstreetmap.org.

[26] Hao Peng, Hongfei Wang, Bowen Du, Md Zakirul Alam Bhuiyan, Hongyuan

Ma, Jianwei Liu, Lihong Wang, Zeyu Yang, Linfeng Du, Senzhang Wang, et al.

2020. Spatial temporal incidence dynamic graph neural networks for traffic flow

forecasting. Information Sciences 521 (2020), 277–290.
[27] Ananth Narayan Samudrala, M. Hadi Amini, Soummya Kar, and Rick S. Blum.

2019. Optimal Sensor Placement for Topology Identification in Smart Power

Grids. In 2019 53rd Annual Conference on Information Sciences and Systems (CISS).
1–6. https://doi.org/10.1109/CISS.2019.8692792

[28] Burr Settles. 2009. Active learning literature survey. (2009).

[29] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation.

IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 8 (2000), 888–
905. https://doi.org/10.1109/34.868688

[30] Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. 2020. Spatial-

temporal synchronous graph convolutional networks: A new framework for

spatial-temporal network data forecasting. In Proceedings of the AAAI conference
on artificial intelligence, Vol. 34. 914–921.

[31] Ben Stabler, Hillel Bar-Gera, and Elizabeth Sall. 2016. Transportation Networks

for Research. https://github.com/bstabler/TransportationNetworks.

[32] Amarnag Subramanya and Partha Pratim Talukdar. 2014. Graph-Based Semi-
Supervised Learning. Morgan & Claypool Publishers.

[33] OZ Tamin and LG Willumsen. 1989. Transport demand model estimation from

traffic counts. Transportation 16 (1989), 3–26.

[34] Yuichi Tanaka, Yonina C. Eldar, Antonio Ortega, and Gene Cheung. 2020. Sam-

pling Signals on Graphs: From Theory to Applications. IEEE Signal Processing
Magazine 37, 6 (2020), 14–30. https://doi.org/10.1109/MSP.2020.3016908

[35] Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and
computing 17 (2007), 395–416.

[36] Luis G Willumsen. 1981. Simplified transport models based on traffic counts.

Transportation 10, 3 (1981), 257–278.

[37] Xiaojin Zhu and Zoubin Ghahramani. 2003. Learning from Labeled and Unlabeled
Data with Label Propagation. Technical Report CMU-CALD-02-107. School of

Computer Science, Carnegie Mellon University.

[38] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. 2003. Semi-Supervised

Learning Using Gaussian Fields and Harmonic Functions. In Proceedings of the
Twentieth International Conference on International Conference on Machine Learn-
ing (Washington, DC, USA) (ICML’03). AAAI Press, 912–919.

[39] Xiaojin Zhu, Jaz Kandola, John Lafferty, and Zoubin Ghahra-

mani. 2006. Graph Kernels by Spectral Transforms. In

Semi-Supervised Learning. MIT Press. https://doi.org/10.7551/

mitpress/9780262033589.003.0015 arXiv:https://academic.oup.com/mit-

press-scholarship-online/book/0/chapter/353093119/chapter-ag-

pdf/44419226/book_41571_section_353093119.ag.pdf

http://www.jstor.org/stable/25769124
http://www.jstor.org/stable/25769124
https://doi.org/10.7551/mitpress/9780262033589.003.0015
https://doi.org/10.7551/mitpress/9780262033589.003.0015
https://arxiv.org/abs/https://academic.oup.com/mit-press-scholarship-online/book/0/chapter/353093119/chapter-ag-pdf/44419226/book_41571_section_353093119.ag.pdf
https://arxiv.org/abs/https://academic.oup.com/mit-press-scholarship-online/book/0/chapter/353093119/chapter-ag-pdf/44419226/book_41571_section_353093119.ag.pdf
https://arxiv.org/abs/https://academic.oup.com/mit-press-scholarship-online/book/0/chapter/353093119/chapter-ag-pdf/44419226/book_41571_section_353093119.ag.pdf
https://doi.org/10.1016/0024-3795(87)90103-0
https://doi.org/10.1007/978-3-642-04898-2_612
https://doi.org/10.1137/10079687X
https://arxiv.org/abs/https://doi.org/10.1137/10079687X
https://doi.org/10.1145/2623330.2623760
https://proceedings.neurips.cc/paper_files/paper/2009/file/90794e3b050f815354e3e29e977a88ab-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/90794e3b050f815354e3e29e977a88ab-Paper.pdf
https://doi.org/10.1016/S0191-2615(00)00009-6
https://doi.org/10.1145/3292500.3330872
https://doi.org/10.1145/1281192.1281239
https://doi.org/10.1145/1281192.1281239
https://elib.dlr.de/127994/
 https://www.openstreetmap.org
https://doi.org/10.1109/CISS.2019.8692792
https://doi.org/10.1109/34.868688
https://github.com/bstabler/TransportationNetworks
https://doi.org/10.1109/MSP.2020.3016908
https://doi.org/10.7551/mitpress/9780262033589.003.0015
https://doi.org/10.7551/mitpress/9780262033589.003.0015
https://arxiv.org/abs/https://academic.oup.com/mit-press-scholarship-online/book/0/chapter/353093119/chapter-ag-pdf/44419226/book_41571_section_353093119.ag.pdf
https://arxiv.org/abs/https://academic.oup.com/mit-press-scholarship-online/book/0/chapter/353093119/chapter-ag-pdf/44419226/book_41571_section_353093119.ag.pdf
https://arxiv.org/abs/https://academic.oup.com/mit-press-scholarship-online/book/0/chapter/353093119/chapter-ag-pdf/44419226/book_41571_section_353093119.ag.pdf

KDD Undergraduate Consortium ’23, August 7, 2023, Long Beach, CA Arnav Burudgunte and Arlei Silva

A REPRODUCIBILITY
Here we describe the setup and implementation details of our exper-

iments presented in Section 5. Implementations of all algorithms,

along with code for reproducing experiments, can be found at

https://github.com/arnav-b/sensor-placement.

A.1 Flow Conservation
Datasets. We use real-world traffic flows on road networks from

four cities, Anaheim, Barcelona, Chicago, and Winnipeg (see Table

1) [31]. The nodes in each network represent intersections and

edges represent roads between them. Each network is represented

as a directed graph where the direction of an edge corresponds to

the direction of traffic flow.

Table 1: Road Networks Used for Experiments

Network 𝑛 𝑚 Flows Speeds

Anaheim 416 914 Real Synthetic

Barcelona 1020 2522 Real –

Chicago 933 2950 Real –

Winnipeg 1052 2836 Real –

Berlin 361 766 – Synthetic

Eastern Massachusetts 74 258 – Synthetic

Los Angeles 1190 1212 – Synthetic

Hyperparameters. We set 𝜆 = 10
−6

when solving the least-squares

formulation in Equation 6.

Baselines. We compare our flow selection method with three

baselines. First, random selection (Random) simply chooses the

next edge uniformly at random from the currently unchosen edges.

Second, recursive bisection (RB) [15] partitions the graph using

spectral clustering and chooses edges crossing the new cut as the

next sensors. The idea is to find "bottleneck" edges where major

flows are concentrated, such asmajor highways. Recursive bisection

has been found toworkwell whenmuch of the flow is not conserved

[15]. Finally, rank-revealing QR (RRQR) [3] exploits a known bound

on the error of the flow conservation algorithm (Equation 5). If the

SVD of the incidence matrix B ∈ R𝑛×𝑚 is given by B = UΣV𝑇 , then
the𝑚 − 𝑛 + 1 rightmost columns V𝐶 of V give a basis for the cycle

space of fully conserved flows. If 𝑆 is a set of 𝑚 − 𝑛 + 1 linearly

independent rows of V𝐶 , then the reconstruction error is bounded

by

| |f̂ − f | | ≤ (𝜎−1
min
(V𝑆𝐶) + 1) · | |𝛿 | | (11)

RRQR uses a greedy heuristic to minimize this bound byminimizing

𝜎−1
min
(V𝑆𝐶) [15].

Evaluation metrics. We report the Pearson’s correlation coeffi-

cient between the predicted (f̂) and the ground-truth (f) flows.

Synthetic Flows [15]. For the experiments in Section 5.1.2, we

generate synthetic flows based on the singular vector decompo-

sition of B as follows. In the SVD of B given above, U ∈ R𝑛×𝑛 ,
Σ ∈ R𝑛×𝑚 contains the singular values 𝜌1, ..., 𝜌𝑚 of B along the

main diagonal with𝑚 − 𝑛 extra columns of zeros, and V ∈ R𝑚×𝑚
contains the right singular vectors. These vectors V1, ...,V𝑚 give a

basis for the edge flow space. The synthetic flow f can be computed

as

f =

𝑚∑︁
𝑖=1

𝑏

𝜌𝑖 + 𝜖
V𝑖 (12)

where 𝑏 ∈ R controls the flow magnitude and 𝜖 ∈ R+ controls the
amount of non-conserved flow. Similar to [15], we set 𝑏 = 20 and

𝜖 = 0.1 for our experiments.

A.2 Smoothness
Datasets. Because the sensor selection heuristic for smooth labels

(Algorithm 2) is much slower than the heuristic for conserved flows

(Algorithm 1), we use the smaller Anaheim, Berlin, and Eastern

Massachusetts networks [31], and a sub-network of the Los Angeles,

CA, network from OpenStreetMap [25] in our experiments.

Baselines. We compare our selection method with random se-

lection and spectral clustering [11, 29, 35]. The spectral clustering-

based sensors are chosen by generating 𝑘 clusters on the line graph

𝐿(𝐺) and choosing a vertex at random from each cluster. When one

or more clusters are empty, we choose edges at random to make

up for the difference.

Evaluation metrics. We report the weighted correlation between

the predicted labels x̂ and the ground-truth x. Weights are given

by a vector w ∈ R𝑚 where w𝑖 is the weight for edge 𝑖 . Setting

w = f allows us to weight correlation by the flow at each edge. We

then compute the weighted correlation coefficient between x̂ and

x [6]. For the Anaheim network, where the ground truth flow is

available, we set w = f . For all other networks, we set w = 1, which
is equivalent to unweighted correlation.

https://github.com/arnav-b/sensor-placement

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	3.1 Preliminaries
	3.2 General Sensor Placement Problem
	3.3 Hardness

	4 Methods
	4.1 Graph-Based Semi-Supervised Learning
	4.2 Sensor Placement Algorithms

	5 Experimental Results
	5.1 Flow Conservation
	5.2 Flow Smoothness

	6 Conclusion and Ongoing Work
	References
	A Reproducibility
	A.1 Flow Conservation
	A.2 Smoothness

