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ABSTRACT  
This paper introduces a novel problem of improving fairness in 
networks as defined by access to influencers. Most real-world 
networks, especially within social media, have a small fraction of 
highly influential nodes. Access to these influential nodes leads to 
better future opportunities. However, recommendation systems 
used in social media often maximize the total number of edges to 
increase engagement and advertising revenue. This creates bias 
and often leads to inequitable access to influencers among nodes, 
creating unequal access to future opportunities. This paper 
provides a principled formulation of this problem using concepts 
in graph algorithms. We first introduced a novel scale-free 
measure to quantify this fairness in networks. A novel 
recommendation algorithm is then introduced that can seamlessly 
work with existing recommendation algorithms to increase this 
fairness in networks. The algorithm introduced in this paper is 
inspired by the seminal work of Watts & Strogatz in the context of 
decentralized search. As such, the approach is to introduce random 
edges in a controlled fashion to create more weak ties in a network 
and reduce the overall distance of nodes from the influencer set. 
Through extensive simulations on two real-world network data 
sets and comparing seven different algorithms, it is shown 
empirically that the fairness of the graph tends to increase 
monotonically as the amount of controlled randomness introduced 
increases. This current approach assumes the graph is connected; 
future pursuits include generalization of the proposed method to 
disconnected graphs. This work provides a foundation to improve 
machine learning algorithms used in networks, particularly social 
media, using foundational concepts in graph theory.  

KEYWORDS  
Social networks, graph theory, network fairness, recommendation 
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1.  Introduction  
       Networks are ubiquitous and significantly influence daily 
lives. Oftentimes these networks have a highly influential small 
set of nodes, and having access to these nodes can be quite 
advantageous. For instance, on a social media site like LinkedIn, 
access to decision makers at large corporations can increase the 
likelihood of obtaining jobs, sales, and other opportunities. 
Similarly, on Twitter and Facebook, access to influencers can help 
businesses market messages more easily and extensively (1). To 
ensure a level playing field for all network nodes, nodes in a graph 
must have equal access to influencers. However, in many real-
world applications, new edges (connections) are formed via 
recommendation systems that are based on network attributes like 
triangle closings (the number of mutual friends) and node 
characteristics like demographics, industry, school, or interests 
(2). While these systems are great at optimizing the number of 
edges that are formed in the network over time, they create 
unintentional biases in the system where some nodes have an 
unfair advantage of gaining more access to opportunities and 
utilities through influencers. The algorithms that power these 
recommendation systems further exacerbate the situation due to 
the attributes they rely on.   
       The main objective of this paper is to show that it is possible 
to modify machine learning algorithms used in social media to 
balance two competing objectives: profit for the social media 
companies and fair access to influencers across all nodes. Under 
these modified algorithms, people will not be penalized based on 
who they know and will instead be rewarded based on what they 
know. This will result in a more equitable society despite the 
increasing influence of social media and digitization.  This paper’s 
technical approach is inspired by the seminal work of Watts and 
Strogatz. In their paper, they demonstrated that introducing 
randomness can lead to more connections in a social network and 
reduce the diameter of the network (3). While Watts and Strogatz 
inspired the idea of adding randomness in a controlled fashion, 
this paper’s approach applied this idea to node recommendation 
algorithms to provide more equitable access to influencers. A 
systematic study of introducing this randomness into node 
recommendation algorithms in the context of networks to increase 
fairness has not been studied before.   
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       There have been several solutions proposed to measure 
fairness in networks, such as the Atkinson Index and using various 
other types of algorithms in networks (4,5). However, these 
algorithms provide variance in utility associated with a node 
across the entire network. In this paper, a scale-free fairness 
measure is calculated using the influencer set and is improved 
using novel node recommendation algorithms.   
       The efficacy of the approach is proved through extensive 
simulations on two real-world datasets comparing seven different 
algorithms. It was shown that adding controlled randomness 
results in fairness increasing monotonically with increasing 
randomness. This paper will motivate further research that can 
leverage well established mathematical models in networks and 
graphs to improve machine learning algorithms used for graphs in 
social media.    

2.  Technical Approach  
  
Graphs used in this paper represent social networks. A given graph 
is assumed to have nodes with the same attributes (ex. skill level, 
age, gender, location), and edges that represent the connections 
among those nodes. In other words, the likelihood of any pair of 
nodes connecting is the same in terms of the attribute properties of 
the different nodes. The difference in the likelihood of any pair of 
nodes connecting comes from graph structure and the differences 
in the number of mutual edges. The graph is also assumed to be 
connected; hence a path always exists. Disconnected graphs are 
discussed in future work.  
  

2.1 Finding an appropriate measure of fairness   
There are three main components to finding an appropriate 

measure for fairness:   
1) finding the influencers in the graph using graph 

theoretic measures;  
2) finding the fairness measure of the overall graph; and  
3) normalizing the graph fairness measure.  

These methods are summarized and explained in further detail 
below.  

  
2.1.1 Determining influencers  
When measuring the influence of a node on the network, 

betweenness centrality was used as the measure of centrality. 
Betweenness centrality measures the proportion of times a node 
acts as a bridge along the shortest path between two other nodes 
(6). The equation for betweenness centrality for a node v is  

  
                       c(𝑣) 	= 	∑ !!"(#)

!!"
				(1)	%&#&'∈)   

  
 

𝜎𝑠𝑡 is the total number of shortest paths from a source node, s, 
to a target node, t, and 𝜎𝑠𝑡 (v) is the number of 𝜎𝑠𝑡 that pass 
through v (7).   

Influencers were found by calculating the betweenness 
centrality of every node in the graph and taking the top k percent 
of nodes as the influencers.   

  
2.1.2 Finding the fairness measure  
Fairness is defined to be the minimum shortest path to the 

influencer set of an existing path. To compute the fairness of the 
entire network, the fairness of a single node is first found, and 
then an average is taken of each node (described in further detail 
below) to compute the fairness of the entire network. Using 
Dijkstra’s algorithm (8), the fairness of a node can be measured 
using  

  
𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠(𝑣)	=	min	{%	,-	.}		𝑑𝑖𝑠𝑡	(𝑣,	𝑠)			(2)  

  
where S is the influencer set, s is the source node in S, and v is 

a node in the graph. If no path exists from a node to the influencer 
set, individual node fairness is not defined. In this paper, it was 
assumed the graph is connected, hence there is always a path. 

   
2.1.2.2 Getting fairness of total graph  
The fairness of the graph is defined to be the average of the top 

t percent of node fairness values. We do this so that we are 
modeling the fairness of the graph only using the best node 
fairness values (defined by t). This can be modeled by the 
equation:  
	 

𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠(𝐺)	=			 0
'12	3%	{$	&'	(	-*}	56,7-8%%(#)

																(3) 

  
where G is the graph in question, v is a node in the graph, and 

V-S is the set of vertices in the graph not including influencers. As 
the denominator becomes smaller, more nodes have better access 
to influencers and the fairness of the graph increases.  

  
2.1.3 – Calculating fairness index  
Since graphs have different numbers of nodes and edges, it is 

important to normalize the fairness values to ensure it is scale-free 
and easily comparable across different graphs. To normalize the 
fairness measure, the fairness of a random graph with the same 
number of nodes and edges as the observed graph was computed. 
A random graph was used to obtain a scale free fairness index that 
makes it possible to compare fairness after adjusting for the 
varying number of edges and nodes in the graph. The fairness 
index is defined as:   

	
𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠𝑖𝑛𝑑𝑒𝑥	=	 56,7-8%%(9)

56,7-8%%(76-:1;	<762=)
							(4)	 
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The Erdos-Renyi graph was used to produce random graphs. 
The Erdos-Renyi graph randomly connects nodes with every edge 
included in the graph with selected probability p. The probability 
for generating a graph with n nodes and m edges is modeled by  

	
𝑝;(1-𝑝)(>,'	-	;)								(5)	

 
where the likelihood of adding more edges to the given graph  

increases as probability p increases (9).   
 The Barabasi-Albert was another method used to produce 

random graphs. This graph begins with an initial connected 
network of n nodes, where new nodes are added to existing nodes 
with probability 𝑝𝑖. 𝑝𝑖 is the probability that a new  
node is connected to node i. This is modeled through the equation  
  

𝑝, =	
k,
∑ 	k@@

																		(6)	

	
where 𝑘𝑖 is the degree of node i and the baseline sum is made  
over all pre-existing nodes  j (10).  

 When generating Erdos-Renyi and Barabasi-Albert graphs, 
different numbers of random graphs (e.g. 5, 10, and 100) were 
tested and fairness values were averaged for each graph. The 
fairness values typically converged and stabilized around 10 
random graphs and above. There was an average of 10 random 
graphs when calculating the fairness index.   

  
2.2 Recommendation algorithms to increase the fairness 

index in a network  
The main idea of the proposed recommendation algorithm was 

motivated by a similar idea in the Watts-Strogatz model in the 
context of the small-world experiment and decentralized search 
(3). The high-level mathematical model behind this approach 
states for a given node n, with some probability P, the proposed 
algorithm recommends a node based on the number of mutual 
friends between n and the candidate node. The larger the number 
of mutual friends, the more likely it is to recommend the node. 
With probability Q = (1-P), the algorithm adds some randomness 
and creates a weak tie by forming a new edge with a randomly 
selected target node. This experiment introduced a modification 
where the weak tie is selected via an importance sampling 
algorithm that is proportional to some function based on degree 
and distance to the influencer set of the candidate node. This 
algorithm is illustrated in pseudocode in the appendix.  

  
2.2.1 – Details  
  

For a given node n, consider the array M[n] = {(m, i(m), w(i(m))}. 
Here, m denotes the target candidate nodes that n is not yet 
connected to. For each node m, i(m) denotes the number of mutual 
friends (edges) between n and m, and w(i(m)) denotes the weight 

of m. The influencer set is not included in M[n] to avoid trivial 
solutions.   

2.2.2 – Calculate w(i(m)) values  
In order to give people with more mutual friends a higher 

probability of connecting, a weight function for each node was 
calculated. The weight w(i(m)) should be an increasing function of 
i(m) because the more mutual friends there are between n and m, 
the more likely they are to connect. Therefore, they should be 
recommended with a higher probability. One popular w function 
used is the sigmoid function q(i)=1/(1+ 𝑒𝑎−𝑖	) where a is a  
constant. Since q(0)=1/(1+𝑒𝑎) is a constant, the weight function is 
		 	 

								w(𝑖) 	= 	 A(B)
A(C)

=	 (8
--	D	0)

(8--D	8-&)
	≈ 	 e,																		(7)	   

The approximation was made assuming a was very large due to 
the probability of two nodes connecting with zero mutual friends 
being very small.  Hence, w(i)=	𝑒𝑖.  This equation is derived in the 
subsequent section. 

Consider another array for a given node n as R[n] = {m, D(m), 
d(m), wr(a, b))}. Here, D(m) is the degree of m, d(m) is the 
minimum distance of m to the influencer set, wr(a,b) is the weight 
function written as wr(a,b)= (E(F))

-

(:(F)).
 and a and b are nonnegative 

constants. Recall m refers to the target candidate nodes that n is 
not yet connected to. The reasoning behind choosing this weight 
function is described in the appendix.  

  
2.2.3 – Algorithm details  
For probability P, the algorithm recommends a node for a given 

visit node n by sampling a node from M with weights proportional 
to w(i)’s. Probability Q = 1-P recommends a node by sampling 
from R with weights proportional to wr(a,b). Note that wr(0,0) = 
1. Just like in the Watts-Strogatz model, for probability P, the new 
algorithm recommends a node that is close to n’s neighborhood, 
while for probability Q, the algorithm selects a node at random 
(assuming a=b=0). These random nodes shorten the path to the 
influencer set and create more fairness.   

For simplicity and efficiency in the simulations, the algorithm 
always connects to the recommended node. In practice, this does 
not happen and recommendations have different connection 
probabilities that are not constant. For instance, the connection 
probability to a node with zero mutual friends is typically lower 
than connecting to a node with ten mutual friends. Since the goal 
of this paper is only to study the impact of adding diversity to 
fairness, this assumption can be made without loss of generality. 
In the end, what matters is the budget in terms of adding nodes at 
random and the fairness index it produces.   

Similarly to the Watts-Strogatz model, diversity can be 
introduced in a controlled manner. Two intuitions were used.  
First, sampling higher degree nodes with higher weights is helpful 
since they are likely to create more paths to the influencer set. 
Additionally, if two nodes are given that have the same high 
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degree, the one that is closer to the influencer set is more likely to 
increase fairness.   

However, it is not clear what is better: a very high degree node 
far away from the influencer set (e.g., a node with a degree of 100 
that is a distance of 3 from an influencer) or a less high degree 
node closer to the influencer set (e.g., a node with a degree of 50 
that is a distance 1 from an influencer). Simulations tested 
multiple a and b values, which will be described in further detail 
in the experiments section (Table 1).  

To get more intuition into the algorithm, the distance between 
w(i) (the mutual friends algorithm) and wr(a,b) was computed 
using the Kullback-Leibler distance function. The distance is 
given by  

 

KL(w,wr(a	 = 	0, b = 0)) 	= 	AMf(k)eG 			+ C
H

G	IJ

									(8) 

where k denotes the number of mutual friends, K is the 
maximum value of mutual friends there are in the data, f(k) 
denotes the frequency of target nodes that have k mutual friends 
with the source node, and A and C are constants. We assume 
a=b=0 for comparing the distance with a completely random 
distribution as the baseline. As can be seen above, the distance 
from the random distribution increases when the source node has a 
higher concentration of target nodes with a large number of 
mutual friends. These are the scenarios where the randomization is 
breaking the “rich gets richer” characteristics of the usual 
recommendation algorithm and creating more fairness.   
  

2.2.4 – Deriving the Kullback-Leibler equation  
  

For a given source node n, let m subscript be the target node 
the source node can connect to and let P and Q be the probability 
distributions for weights w and wr (a=b=0), respectively. 
Therefore, P = Aw and Q=B(wr), where A and B are normalizing 
constants:  

 

KL(P, Q) 	= 	MP(m)	log(
P(m)
Q(m))															(9)

;

 

  
Since w(m)= 𝑒𝑖(𝑚) and wr(a=b=0) = 1, where i(m) is the 

number of mutual friends between n and target node m, the 
expression simplifies to:   
 
KL(P, Q) 	= 	AMi(m)e,(;)

;

		+ 	C,where	C	is	a	constant			(10) 

 
Let k be the number of mutual friends and f(k) denote the 

frequency of target nodes with k mutual friends with the source 
node n. Doing a frequency tabulation of i(m)𝑒𝑖(𝑚)over all target 
nodes, the expression becomes: 

 	
															KL(P, Q) 	= 	AMf(k)keG 		+ 	C																																						(11)

GI0

 

 
2.3 Experiments  
Simulations were conducted on multiple datasets to show the 

efficacy of the proposed methods: a Facebook social circles graph 
and a LastFM graph (Figure 1). Both data sets had different 
network structures and provided complementary insights to the 
methodology in this paper. For each data set, the 𝐷𝑎	 / 𝑑𝑏 algorithm 
was run for seven pairs of a and b (Table 1).  

The Barabasi-Albert random graph was used to calculate the 
fairness index of nodes (Figure 2).  

Additionally, the influencers of the LastFM graph were 
manually changed to show the robustness of this algorithm 
(Figure 3). The new influencers had very low betweenness 
centralities, representative of situations where influencers who 
don’t have a big social media presence are still influential in the 
real world.  

  
Figure 1: Visualization of Facebook and LastFM Networks  

Nodes and edges of the graph were visualized using the NetworkX 
draw feature, which draws the graph using Matplotlib. Nodes 
(dots) on the graph represent a person in a social media network, 
and edges (lines) represent a connection in the network. The graph 
on the left representing the Facebook social network shows 
several dense communities loosely connected by weak ties. The 
graph on the right representing the LastFM network shows one 
central community with some nodes on the periphery.   
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Figure 2: Fairness Convergence for Random Graphs for 
Different Amounts of Edges  

This graph compares the Erdos-Renyi and Barabasi-Albert 
random graphs. The x-axis indicates the different number of edges 
and the y-axis represents the fairness index of these graphs. The 
random graphs’ fairness indices begin to converge to a singular 
value as the number of edges increases. The Barabasi-Albert 
random graph converges faster than the Erdos-Renyi graph; while 
the Erdos-Renyi graph starts to converge at 50,000 edges and then 
changes values at 100,000 edges, the Barabasi-Albert graph 
begins to converge at 40,000 edges and stays at the same fairness 
value through the 100,000 edges. Therefore, the Barabasi-Albert 
random graph serves as a better normalizing value for calculating 
the fairness index.  

  
  
Table 1: Different values of a and b being tested  

This table details the different values of a and b that are being 
tested in our overall 𝑫𝒂/𝒅𝒃 recommendation algorithm, and that 
are graphed in Figure 3.  

  

Figure  3:  Changes  in  Fairness  with  Different  
Recommendation Algorithms for Social Networks  

The x-axis in graphs A,B, and C is the probability Q that the 
recommendation algorithm recommends a node based on 
randomness. The y-axis is the fairness index, where a higher value 
indicates more fairness in the graph. Each graph compares 
numerous recommendation algorithms of the form	 𝑫𝒂/𝒅𝒃, with 
various values of a and b plotted. Graph A compares 
recommendation algorithms in the Facebook social network. The 
blue line with the degree algorithm (a = 1, b = 0) consistently 
appears to be the highest line of the graph, indicating that it 
achieves the greatest degree of fairness. Graph B compares 
recommendation algorithms in the LastFM social network. The 
red line, or the (D/d)K	algorithm (a =2, b=2), consistently earns 
the highest fairness index, indicating it produces the greatest 
fairness. Graph C also compares different recommendation 
algorithms for the LastFM social network, except with a different 
choice in influencers (low betweenness centralities). It appears  
that (D/d)K still produces the highest fairness indexes, proving the  
robustness of the algorithms with a change in influencers.   

3.  Results  
3.1 – Random graph  
It was found that the Barabasi-Albert random graph converged 

faster than the Erdos-Renyi graph and provided a better 
normalizing value for calculating the fairness index (Figure 3). 
The fairness index of nodes were calculated using the Barabasi 
Albert graph.   

  
3.2- Facebook data  
It was observed that degree (a =1, b = 0) was the best 

algorithm for the Facebook graph as it consistently produced the 
highest data points.  D/𝑑2 and (D/𝑑)K were close seconds (Figure 
3).  

Each of the algorithms had the same value for Q=0 due to the 
locations’ algorithms being based on mutual friends and not 
randomness. The fairness index increased when there was a higher 
chance of randomness in the network, indicated by the decreased 
P and increased Q.   

  
  3.3- LastFM data  

It was observed that (D/𝑑)K  resulted in the highest fairness 
values for the LastFM data (Figure 3).    

 
3.4- Studying the impact of changing influencers on the 
fairness index  

The algorithm was robust to a change in influencers by 
showing that (D/𝑑)K  resulted in the highest fairness values 
(Figure 3). 
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4.  Discussion  
As the amount of randomness, Q, in the network increased, the 

overall fairness in the network in terms of access to influencers 
increased. This is the most critical and basic observation, and it 
shows the efficacy of the approach. Based on this experiment, it 
appeared that introducing randomness as some polynomial 
function of D and d makes a difference relative to complete 
randomness. (D/𝑑)K  seemed to be the best recommendation 
algorithm to increase fairness in the network, although it is 
specific to the dataset at hand. This result is significant and 
important to find algorithms that can achieve high fairness with 
lower randomization. More randomization would lead to more 
loss in number of edges and hence engagement and revenue. 
Additionally, the algorithm found is robust to small changes in the 
quantity and set of influencers. The overall increase in fairness 
with increasing randomness deteriorated but the monotone 
increasing pattern remained intact. This is again significant 
because the definition of influencers in the real-world could be 
defined in various ways. For instance, it could include a famous 
personality who is known to be an influencer but does not 
necessarily engage in a social network, and hence, they could have 
low betweenness centrality. This result shows networks can add 
such nodes in the influencer set based on relevant domain 
knowledge and still obtain fairness using the algorithm proposed.  

5.  Conclusion  
A novel problem of measuring network fairness in terms of 

access to influencers was introduced in this paper. Novel methods 
to measure this fairness and increase this fairness with 
recommendation algorithms were proposed. The efficacy of the 
approach was tested through extensive simulations on two real 
world datasets comparing several variations of the algorithm. 
First, experiments conducted proved the efficacy of the proposed 
approach: fairness tends to increase monotonically with increasing 
randomness. This is important as increased randomness will also 
monotonically increase the number of edges lost compared to the 
canonical recommendation algorithm. Hence, the outlined 
approach provides a clear mechanism to incorporate fairness in 
social media through a simple randomization mechanism that can 
be easily incorporated into existing systems. This study also 
showed that introducing randomness via importance sampling 
through a polynomial function of D and d can yield better fairness 
with lower randomness. Other functions based on node attributes 
can improve this even further. Machine learning applications can 
be explored in future work. Finally, this study showed that the 
monotone relationship is intact with changes in the influencer set. 
This is a critical finding as in the real-world, influencers may not 
be necessarily determined solely based on the graph theoretic 
measure we introduced. Some domain knowledge may also be 
important. For instance, a famous personality who is not very 
active on social media could still be considered as an influencer.   

Previous work studied bias and fairness in supervised machine 
learning algorithms that address fairness by modifying the training 
data and the supervised algorithms (5). While this work is similar 
in motivation, it is highly specific to networks. Additionally, there 
is very recent work being done on dyadic preferences in a graph, 
where the authors of the paper address potential bias in user 
recommendation (11). However, their work is specific to ensuring 
demographic parity with respect to node attributes in the network. 
This work addresses a more specific problem of ensuring fairness 
with respect to access to influencers. While it is more specific, it 
does require new methods to measure fairness and modify the 
recommendation algorithms. The area of studying fairness in 
networks is relatively new and hence the literature in this area is 
sparse.  

The methods discussed only apply to connected graphs as the 
fairness measure would not be defined if the graph is 
disconnected. Future investigations include studying 
generalizations to disconnected graphs. Additionally, since the 
simulations in the experiment were based on small datasets, it 
encourages future studies of behavior with very large graphs. This 
will require large scale distributed computing with graphs that we 
plan to explore. The activeness of a user can also be considered 
when running simulations. Currently, it is assumed all nodes are 
equally likely to visit the network in the simulations. It is also 
assumed that the number of nodes in a graph remains constant. 
The number of nodes visiting a network depends on how active a 
user is, and nodes in a graph are not constant due to users 
constantly joining and leaving.  
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APPENDIX  

A.1 Pseudocode  

1. Determining Influencers  

  

2. Calculating Fairness of a Node  

  

3. Calculating Fairness of Graph  

  

4. Calculating Fairness Index of Graph  

  

5. Recommendation Algorithm  

  

A.2 Reproducibility  
2.1 – Data  In this paper, 2 data sets were used: a Facebook 

social circles graph and a Last FM Network. The Facebook social 
circles graph can be found here: 
https://snap.stanford.edu/data/egoFacebook.html, and the LastFM 
network can be found here: https://snap.stanford.edu/data/feather-
lastfm-social.html.   

2.2 – Code  
The link to the code used in this research can be found here:  

https://colab.research.google.com/drive/1mjletqli0W1oJd0qDc1u 
8SGLmUYNJ5n_?usp=sharing.  

  

  
  


