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ABSTRACT

In text generation, we aim to produce outputs that are not only
correct but also diverse in terms of content, use of words, and
meaning. The ability to generate accurate and diverse text is crucial
in conversation systems, story generation, machine translation,
paraphrasing, commonsense reasoning, etc. To efficiently evaluate
the generated text, researchers have extensively studied automatic
evaluation metrics to substitute expensive, slow human evaluation.
Existing metrics include n-gram-based metrics and neural-based
metrics. The former perform well on measuring form or lexical
quality and diversity while the latter excel at detecting semantic
quality and diversity, both showing good correlation with human
judgments. In this work, we observe that the trade-off between se-
mantic quality and diversity occurs in the output of models trained
for multi-reference text generation, making it hard to find the opti-
mal model by looking at quality and diversity metrics separately.
We propose a human study framework and provide methods to
generate experiment data for researchers to design or evaluate new
metrics in the future.
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1 INTRODUCTION

Human languages, as mediums and means of communication, were
initially created so that people can convey thoughts and ideas accu-
rately. In our daily life, there are many scenarios where we also need
diversity in written or oral communication. For example, teachers
may wish to see diversified stories and ideas under the same essay
topic. Audience may wish to hear different answers to the same
question from different celebrities on a talk show. Journalists may
strive to come up with a wide variety of questions on the same
incident for their interviewees or propose unique titles for a report
article so that it can appeal more readers.

Producing diverse content requires one person for an extended
period or multiple persons to generate several stories under the
same topic. It is challenging for both humans and machines. Text
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generation models are desired to produce outputs that are not only
correct, but also diverse [23]. In the literature, the term “diversity”
is often referred to as the ability of a generation model to create a
set of outputs that are valid and also vary in terms of content, use
of words, and meaning [9, 27]. Such a research problem is often
referred as one-to-many generation [4, 21, 22, 27]. For example, in
a conversation system, an engaging generation model should be
capable of outputting grammatical, coherent responses that are in-
teresting and diverse, avoiding trivial, commonplace responses [13].
In news article queries, diversifying clickable queries will expose
users to a wide variety of article contents, boosting user experience
and attracting more users [22]. Other tasks concerning diversity
include paraphrase generation [7] and machine translation [21].

Human evaluation is often a good indicator of the quality [20]
including diversity of text generated by a system. However, human
evaluation is a high-latency and expensive process that does not fit
in model development pipeline [20]. Thus, there has been extensive
studies about automatic evaluation metrics in NLG that approximate
human evaluation while being computationally cheap.

The first generation of metrics are n-gram-based metrics. Quality
n-gram metrics include BLEU [18], ROUGE [15], and METEOR [2].
They measure the lexical similarity between sentences relying on
handwritten rules such as n-gram overlap. Diversity n-gram met-
rics include distinct n-gram (distinct-n) [13], Entropy (Ent-n) [30],
and Self-BLEU [31]. Since these metrics only concern lexical varia-
tion, they cannot appropriately reward semantic or syntactic varia-
tions [20]. They perform well on measuring form or lexical diversity
but poorly on content or semantic diversity [23].

Researchers address such problem by incorporating learned el-
ements into evaluation metrics. There are metrics that are fully
trained to correlate with human evaluation such as BEER, RUSE,
and ESIM. Some other metrics such as YiSi and BERTScore [29]
combine trained contextual embedding and handcrafted token align-
ment logic. Sentence-BERT (sent-BERT or SBERT) [19], for example,
is a modification of the pre-trained BERT by using siamese and
triplet network structures to construct semantically meaningful sen-
tence embeddings, which can be compared using cosine similarity
or Euclidean distance. Such neural metrics are found to outperform
n-gram metrics at detecting accuracy and diversity [23, 29].

Recently, neural metrics have achieved high correlation with
human evaluation in terms of quality [19, 20, 29] and content di-
versity [23]. In generation tasks, we often hope that the system
outputs can be both accurate with respect to reference(s) and di-
verse against other generated hypotheses, especially when there are
multiple acceptable answers. However, machine often fail to gener-
ate accurate and diverse responses comparable to human-crafted
references [8, 23]. Moreover, it is observed in our experiments that
there is a tradeoff between accuracy and diversity. But there is
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Input: Lisa played Jazz music for Moses of the Old Testament yesterday.

Reference 1 (RM): Moses is not alive.
Hypothesis 1 (HM): Moses is not alive.

Reference 2 (R®): Moses has been dead for a long time and could not have heard a concert yesterday.
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Figure 1: An example of the task of commonsense explanation generation where we observe the tradeoff between accuracy
and diversity. Top: Table of input, reference, and generated sentences including the accuracy and diversity scores for each
hypothesis using sent-BERT [19]. Bottom: Sentence embedding based on accuracy and diversity values on the right. In this
case, we have two diverse references R(!) and R(?). Suppose Hypothesis 1 H M) js equivalent to RO, Multiple options of H 2 are

generated. H,,(lz) has the highest accuracy but very low diversity. Hé.z) is a wrong response but gives the highest diversity. H}(}z)

and HC(Z) exhibit the tradeoff, making it hard for existing metrics and even human to decide which one is better.

no standard method to find the optimal point when the tradeoff
occur. A typical scenario would be model selection when training
a text generation model. When multiple models are evaluated on
the validation set and tradeoff between accuracy and diversity is
observed, how do we decide which has the best performance?

Figure 1 is an example in the commonsense explanation genera-
tion dataset (ComVE). Given a counterfactual statement, the task
aims to generate multiple reasons or explanations about why this
statement does not make sense [25]. We use cosine similarity as
accuracy and the inverse of cosine similarity as diversity. Accuracy
of a hypothesis given two references is the higher of the two cosine
similarity values with respect to each reference.

Previous works [1, 3] have shown that accuracy (BLEU) and
lexical diversity (Self-BLEU) are negatively correlated in single-
reference tasks. However, such a trade-off should be expected:
generated responses of high accuracy should be clustered close
to the single reference while highly diverse responses tend to be
found farther from the single reference. In this work, we conduct a
systematic experiment on multi-reference tasks to verify the asyn-
chronous behavior of accuracy and diversity from the semantic
perspective. Finally, we propose a human study framework to cope
with the problem of the trade-off between accuracy and diversity
and prepare experiment data from a multi-reference dataset. We

will use the data to conduct human studies. Our goal is to learn
how human make decisions when accuracy and diversity metrics
disagree. By measuring human judgments on the latent space (such
as decision boundary), we hope to develop metrics that better align
with human evaluation.

2 RELATED WORK AND PRELIMINARIES

2.1 Diversity-Promoted Text Generation

There are many applications for diverse generation (i.e., producing
several outputs given a source sequence) such as dialogue sys-
tem [6, 13], machine translation [21], and story generation [27]. For
example, as opposed to the common intuition that translation is a
one-to-one mapping, there are actually many plausible translations
of the same input differing in style, grammar, or vocabulary [11].
There has been much effort on enhancing diversity in text gener-
ation with different approaches. Sampling-based decoding methods
are simple yet effective ways to diversify generated text. For ex-
ample, nucleus sampling [8] samples from the dynamic nucleus
of tokens containing the vast majority of the probability mass
rather than sampling directly from the probabilities predicted by
the model. Another way to improve diversity involve introducing
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Table 1: Symbols and their description.

Symbol Description

my, mp ~ Number of references/hypotheses

RM The i-th reference
R The set of references: R = {R(l), ...,R(m’)}

HD The i-th hypothesis
H The set of hypotheses: H = {HV), .., H(m)}
k Length of sentence (i.e., number of tokens)
X An input X = {x1, ..., xg } of k tokens
n Size of embedding space

noise or modifying latent vectors [7, 11], such as incorporating
variational autoencoder (VAE) to generate diverse text [7, 26].

2.2 Accuracy and Diversity Evaluation

Table 1 presents the symbols (and their descriptions) that we use
throughout the paper.

In text generation, two aspects are considered when evaluating
generated outputs: accuracy and diversity. Accuracy tests the cor-
rectness of the responses with respect to the input context and
references, and diversity measures the form (lexical) and content
(semantic) heterogeneity of the generated responses given the same
input. These evaluation metrics have been extensively used in ex-
isting literature [4, 24, 27, 31]

2.2.1 n-gram Accuracy Metrics. Popular n-gram metrics, such as
BLEU [18], ROUGE [15], and METEOR [2], measure accuracy based
on n-gram overlap between the generated hypothesis and the tar-
get(s). In a multi-reference setting, given a set of m references
{(RW, . RUmM)} and a generated hypothesis H, the accuracy is
the best accuracy achieved with a reference in the set. Concretely:

Accuracy(H) = ax Accuracy(H,R(i))
sIsm

2.2.2 n-gram Diversity Metrics. A popular diversity metric is dis-
tinct n-gram, which measures the proportion of distinct n-grams
out of the total number of n-grams in the corpus [13]. Entropy-
n [30] tests lexical diversity by measuring how evenly distributed
are the n-grams in a given sentence, with word frequency taken
into account. For these two metrics, higher values indicate better
diversity.

Another line of n-gram metrics measure pairwise diversity. Self-
BLEU [31] computes the BLEU score of a generated sequence
with respect to another generated sequence, reflecting the level
of similarity inside the set of generated sentences. Concretely, if
H = {HD HD HmY are generated given the source se-
quence, then Self-BLEU computes the average BLEU among all
pairwise combinations of H. Low average Self-BLEU implies low
similarity (or high diversity) between generated sentences.

2.2.3  Neural Quality Metrics. A new line of metrics aim to use
language models such as BERT or generation models such as BART.
Some embed generated sequences to a latent space and then evalu-
ate them using geometric features in the space such as cosine sim-
ilarity or Euclidean distance. Some evaluate generated sentences

KDD-UC, August 14-18, 2022, Washington DC, USA

with the generation probability distribution and calculate the gen-
eration probability from different perspectives [28].

2.2.4 Diversity as Similarity Reduction. Tevet et al. proposed a
method to construct a diversity metric from any pair-wise similar-
ity metric on sentences [23]. Given a symmetric similarity metric
sim(HW, H)) that measure the similarity of a pair of sentences
(H (i), H (j)), we can construct a diversity metric div(-) as the nega-
tion of the mean similarity score across all pairs of H.

div(H) = __I;{I S simE®,HO)

( 2 )H(i),H(J'>e(H,i<j

2.25 Neural Diversity metrics. By applying the reduction process
above, we can derive corresponding diversity metrics for each neu-
ral quality metrics. For example, the Self-BERT metric used in [5, 16],
converted from BERTScore, measure the semantic similarity of gen-
erated text with itself. The negative sign is omitted to align with
self-similarity metrics like Self-BLEU. Lower Self-BERTScore means
higher diversity as the generated text are less similar.

1

self- BERT(H) = — BERT-Score(HY), H))
( 2 )H(i>,H<J')e(}—I,i>j

3 VALIDATING TRADEOFF WITH MULTIPLE
REFERENCES

Existing work has noticed the tradeoff between accuracy and diver-
sity under n-gram metrics such as BLEU and self-BLEU in single-
reference text generation tasks [1, 3]. In those tasks, the tradeoff
between accuracy and diversity should be expected since high-
quality outputs should converge to the single reference. To the
best of our knowledge, there was no work that experiments on
multi-reference text generation tasks. Past research recognize that
BLEU is not always a good proxy of sample accuracy [3], neither
with Self-BLEU for diversity. With the emergence of neural metrics
that align better with human semantic evaluation, we conduct a
systematic experiment to see if the tradeoff occurs.

3.1 Text Generation Tasks

We consider two text generation tasks with multi-reference datasets.

3.1.1 Commonsense Explanation Generation. Given a counterfac-
tual statement, the task aims to generate the reason and explanation
about why this statement does not make sense [25]. We use the
ComVE dataset from SemEval-2020 Task 4 subtask C [25], con-
taining 10,000 / 997 / 1,000 examples for training / dev / test set
respectively. Each example in ComVE has three references.

3.1.2  Commonsense Reasoning Generation. CommonGen is a con-
strained generation task that requires machines to generate a sen-
tence describing common, day-to-day scene using concepts from a
given concept set [14]. The CommonGen data contain 32,651 / 993
/ 1,497 examples for train / dev / test set respectively. The concept
set of each example has three to five concepts.
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Figure 2: Diversity vs. accuracy results of models with three decoding strategies on two datasets. Each point on the plot
represents the performance of a model on the dev sets. Diversity is measured by 1-Self-BERTScore. Accuracy is measured by
BERTScore. Higher values on the two axes represent better diversity and accuracy, respectively.
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(d) CommonGen dataset: Beam Search

3.2 Model Development Details

We use BART, a pre-trained Transformer model that has exhibited
great performance on a variety of text generation tasks [12]. Specif-
ically, we utilized BART-base pre-trained weights to initialize the
models. They consist of encoders and decoders with 6 layers and
12 attention heads with hidden size of 768. For fine-tuning, we use
Adam optimizer with learning rate of 3e-5 that warms up over the
first 10k steps (f1 = 0.9, f2 = 0.999). For the training process, our
models are trained on Tesla V100 GPU with a 4-card 32GB memory.

3.3 Decoding Strategies

We investigate three decoding strategies that enable a text genera-
tion model to create different outputs for the same input. With two
text generation tasks/datasets and three strategies, we wish that
our investigation leads to reliable observations.

3.3.1 Beam Search. Beam search is a search algorithm that stores
B highest-scored partial solutions at each time step (B is the beam
width). At the time step t, beam search looks at all possible token
extension of existing beams and retains the B beam tokens [24].

3.3.2  Nucleus Sampling. Nucleus sampling truncates the unreliable
tail of the probability distribution and sample from the dynamic
nucleus of tokens containing the vast majority of the probability
mass to avoid text degeneration [8].

3.3.3 VAE. Variational auto-encoder (VAE) [10] is a generative
latent variable model. Recently, VAE has been used to build genera-
tive frameworks to generate diverse responses by sampling latent
variables from an approximate posterior distribution [7, 26].

(e) CommonGen dataset: Nucleus Sampling

(f) CommonGen dataset: VAE

3.4 Observations

Figure 2 shows the relationship between between BERT-Score (ac-
curacy) and 1-Self-BERT (diversity) using BART models with beam
search, nucleus sampling, and VAE decoding strategies. We have a
few interesting observations.

First, we observe that the diversity score is consistently nega-
tively correlated with the accuracy score on the multi-reference
text generation tasks. There is no optimal model that outperforms
others in terms of both accuracy and diversity.

Second, BART models with the VAE decoding strategy produce
much more diverse responses on the text generation tasks at the
expense of a small amount of accuracy. Beam search and nucleus
sampling create similar levels of semantic accuracy, but nucleus
sampling gives models the ability to achieve higher diversity.

Third, we find that the accuracy does not synchronize with
diversity with respect to training epochs. Specifically, the epoch
that achieves the maximal accuracy does not achieve the best diver-
sity; and the epoch that achieves the best diversity does not achieve
the best accuracy. Due to the asynchronous behavior, it is hard to
find an absolute optimum considering both accuracy and diversity.

Discussion. From the fact that both metrics align well with hu-
man evaluation [5, 16, 29], we assume that human evaluation of
accuracy and diversity separately would exhibit a similar pattern.
However, humans are able to detect when a set of responses is too
diverse to be acceptable (i.e., unacceptably wrong), while unfortu-
nately this cannot be reflected by automatic metrics.

Therefore, we are interested in investigating how humans make
decisions on the semantic quality of machine-generated text, when
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there is a tradeoff between accuracy and diversity. We aim to un-
derstand how human makes decisions in this case so that we can
simulate such behaviors to a unified scoring or measurement across
training epochs or develop a new metric that aligns better with
human judgment.

4 HANDLING THE TRADEOFF: PROPOSED
APPROACH USING HUMAN EVALUATION

We propose an approach to collect human evaluation data and
analyze them to handle the tradeoff between accuracy and diver-
sity. This approach is designed towards any multi-reference text
generation task and any embedding space.

Given a set of references R = (R, R?_ .. R(M) (m € {2,3})
and two sets of hypotheses H = (H(l),H(z), R H(m)) and
H = (H(l)/,H(zy, .. .,H(m),), humans are able to decide which
set of hypotheses is better if one set outperforms the other on both
accuracy and diversity. Then a key question that we wish to answer
is: if one set of hypotheses have better accuracy and the other is
more diverse, how can we decide which set is better overall?

4.1 Assumptions

In our analysis, we have a few assumptions about semantic diversity.
First, as long as machine responses is as diverse as human generated
text, there is no need to aim for higher diversity. The diversity
of human hand-written text is indicated by that of ground-truth
references in multi-reference tasks. In most cases, ground truths are
highly diverse. Besides, given the first hypothesis sentence H ),
if we further generate two options of the second hypothesis H‘(lz)
and H 152) of the same accuracy score, then we prefer the one that is

more diverse compared to H (), The same holds when we desire
three or more generations. Existing diversity evaluation metrics like
Self-BERTScore don’t take into account accuracy. Higher diversity
may not always mean better quality. Random output may give a
very high diversity but its accuracy is not acceptable compared
with the references.

4.2 Experiment Setup

In our experiment design, we tackle the problem by controlling
all but one hypotheses in a set to be evaluated by a human anno-
tator, instead of comparing two completely different sets of hy-
potheses. Specifically, we design our experiment as below: Given
R = {RW R®} and HD that is very close to R, we generate
a set of H® and let humans decide which one yields the best
combination with H(1).

4.3 Data Preparation

We aim to find a set of H® for each data instance for human
to evaluate their quality. In each set, any two hypotheses are ex-
pected to exhibit a tradeoff in accuracy and diversity, where human
annotators are asked to rate them.

4.3.1  Overview. Figure 4 presents how we find multiple options
of H®), Suppose we are given RM and R® [isa hyperplane on
which the points have equal distance to RW and R® . We call it
the equidistant hyperplane (of n — 1 dimensions in an n-dimensional
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Figure 4: Experimental setup: how to find multiple options
of H? for comparison? See Section 4.3.1.

embedding space). {/;} are hyperplanes that are parallel to the
equidistant hyperplane I. Hypothesis points on a particular /; exhibit
a tradeoff between accuracy and diversity. HC(Z) gives high diversity
(far from H) but low accuracy (close to neither reference). In
comparison, H,ﬁz) has higher accuracy and lower diversity since it
is closer to R®) and H(.

Next, we will introduce how to find the equidistant hyperplane
I and parallel hyperplanes {I;}.

4.3.2  Find the equidistant hyperplane. The equidistant hyperplane
is represented by

I={p={(p1,....pn) € R™a1p1 + agps + -+ + anpn + ¢ = 0},

where ¢ can be any nonzero constant. We are able to find the approx-
imated values of the coefficients aj, . .., a, by randomly sampling
n points on or extremely close to [; and solving a system of linear
equations.

4.3.3  Find parallel hyperplanes. Similarly, the points on hyper-
plane parallel to the equidistant hyperplane are likely to satisfy our
requirement. Formally, they are represented by

I; = {p € R™|dist(p, 1) = d}

where the distance between p = (p1, . . ., pn) and [ can be calculated
by
o + +ot +
dist(p,1) = L1 2P dnfnC,
ai+ai+---+ah

We may also say the distance between [ and /; is d.

4.3.4 Generation method. We use BART models with VAE (I, = 8).
We use all multi-referenced data for training and take out a subset
as validation set to generate responses and evaluate at each training
epoch. Specifically, we use ComVE, where each data instance has
three references. We train the models with R(Y and R for 50
epochs. We then add R®) back in and finetune the models for
another 5 epochs. We chose to do this so that our model can generate
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hypotheses close enough to each reference that is provided during
training while being capable of generating diverse responses on
the hyperplanes (with VAE framework).

For each input context, we generate 450 hypotheses (may include
duplicates) and group them together based on their distance. Points
with distance d + € away from [ are considered to be in the same
group (e = 0.025).

4.3.5 Data Selection. We wish that hypotheses in a set are not too
similar; otherwise, it is too hard for human annotators to rate and
rank them. Besides, we hope that those hypotheses are not all incor-
rect generation, in which case accuracy and diversity will become
secondary. Therefore, we apply filtering using BLEU and Self-BLEU
of each set. More specifically, we select the sets of hypotheses with
BLEU above the average BLEU of all sets and Self-BLEU below the
average for human study.

4.4 Human Study Design

4.4.1  Criteria for humans to give ratings. In the experiment, we
will collect ratings on the following criteria from human judges:

e Accuracy: Does the utterance accurately fit in the context?

e Diversity: How different or diverse is this generation given
the previous generations?

e Overall: How do you judge the overall quality of the genera-
tion?

For hypotheses in each group, we ask human annotators to rate
them under the RankME framework [17]. Specifically, we will put
all hypotheses in a set in parallel and ask human annotators to
rate each hypothesis from the three criteria separately. References
will be set as a standard score 100 on each criterion. For example,
hypotheses worse than references with respect to one criterion will
be rated at a score below 100.

4.5 Initial Results

In Table 2, we include a subset of an example in ComVE dataset.
Within the same hypothesis set, some achieve high diversity but
give the wrong explanation, which is not desired. Other responses
trade diversity to give a more accurate explanation.

From initial human studies, we observe that humans tend to
value accuracy more than diversity, when the hyperplane is close to
a reference, such as hypothesis set 3. However, for hypotheses sets
that are close to the equidistant hyperplane (sets that are farther
from the references), such as set 1, diversity is more preferred and
the best response is the one that gives a relatively high diversity.

5 FUTURE DIRECTIONS

5.1 Designing Evaluation Metrics of Overall
Semantic Quality

Although automatic accuracy metrics have shown positive corre-
lations with human judgments, there is a noticeable gap between
the existing diversity metrics and human evaluation in terms of
semantic diversity [23]. Therefore, neural-based diversity metrics
are of high demand and should take into account generation quality.

There is unlikely that a generalized metric can fit human judg-
ments for all tasks. Indeed, some tasks such as story generation

Fang and Jiang

Table 2: An example in the ComVE dataset. The hypotheses
in each set are ranked from the highest diversity to the lowest.
Then naturally, as we demonstrated in Figure 4, the accuracy
decreases from the top to the bottom.

Input Context

We should not help the weak.

References

Everyone has a hard time so we should help the weak.
The weak need help.
The biggest reward comes in helping the weak.

Hypothesis Set 1: d = 0.1

e The weak need to be treated with love and respect. (best)

o The weak need to be treated by the best doctors and nurses.
o The weak need to be protected. We should protect them.

e We should help the weak they need help.

Hypothesis Set 2: d = 0.26

o The weak need help to survive. We should help them..
o The weak need to be strong. We should help them.

Hypothesis Set 3: d = 0.48

o The weak need help. We should not help the weak.(wrong)
e The weak need help and we should help the strong. (wrong)
e The weak need to be treated by the best.(best)

accept a higher level of diversity than tasks such as machine trans-
lation. Therefore, the new metrics should consider the types of text
generation tasks.

5.2 Benchmarking with Human Judgement

Our proposed approach will perform human study to evaluate
how well new metrics align with human judgment when there is a
tradeoff between diversity and accuracy. However, human study is
expensive and takes long time. To save the community’s separated
efforts, we are considering to develop a benchmark dataset with
human judgement scores for evaluating new metrics about both
accuracy and diversity.

6 CONCLUSIONS

In this paper, we conducted experiments to validate the trade-off
between semantic accuracy and diversity on multi-reference text
generation tasks beyond n-grams. The observation is consistent
on different generation tasks and decoding methods. Furthermore,
we proposed a novel human study framework and data collection
methods to learn how humans make decisions on the tradeoff.
Future work can utilize this framework to develop or evaluate new
metrics as well as new benchmarks, eventually seeking to optimize
existing models to generate both accuracy and diverse outputs.
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