A PHP Error was encountered

Severity: 8192

Message: Non-static method URL_tube::usage() should not be called statically, assuming $this from incompatible context

Filename: url_tube/pi.url_tube.php

Line Number: 13

KDD 2020 | Reciptor: An Effective Pretrained Model for Recipe Representation Learning

Accepted Papers

Reciptor: An Effective Pretrained Model for Recipe Representation Learning

Diya Li: Rensselaer Polytechnic Institute; Mohammed Zaki: Rensselaer Polytechnic Institute


Recipe representation plays an important role in food computing for perception, recognition, recommendation and other applications. Learning pretrained recipe embeddings is a challenging task, as there is a lack of high quality annotated food datasets. In this paper, we provide a joint approach for learning effective pretrained recipe embeddings using both the ingredients and cooking instructions. We present RECIPTOR, a novel set transformer-based joint model to learn recipe representations, that preserves permutation-invariance for the ingredient set and uses a novel knowledge graph (KG) derived triplet sampling approach to optimize the learned embeddings so that related recipes are closer in the latent semantic space. The embeddings are further jointly optimized by combining similarity among cooking instructions with a KG based triplet loss. We experimentally show that RECIPTOR’s recipe embeddings outperform state-of-the-art baselines on two newly designed downstream classification tasks by a wide margin.

How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: