Accepted Papers

Partial Multi-Label Learning via Probabilistic Graph Matching Mechanism

Gengyu Lyu: School of Computer and Information Technology, Beijing Jiaotong University; Songhe Feng: School of Computer and Information Technology, Beijing Jiaotong University; Yidong Li: School of Computer and Information Technology, Beijing Jiaotong University


Download

Partial Multi-Label learning (PML) learns from the ambiguous data where each instance is associated with a candidate label set, where only a part is correct. The key to solve such problem is to disambiguate the candidate label sets and identify the correct assignments between instances and their ground-truth labels. In this paper, we interpret such assignments as instance-to-label matchings, and formulate the task of PML as a matching selection problem. To model such problem, we propose a novel grapH mAtching based partial muLti-label lEarning (HALE) framework, where Graph Matching scheme is incorporated owing to its good performance of exploiting the instance and label relationship. Meanwhile, since conventional one-to-one graph matching algorithm does not satisfy the constraint of PML problem that multiple instances may correspond to multiple labels, we extend the traditional probabilistic graph matching algorithm from one-to-one constraint to many-to-many constraint, and make the proposed framework to accommodate to the PML problem. Moreover, to improve the performance of predictive model, both the minimum error reconstruction and k-nearest-neighbor weight voting scheme are employed to assign more accurate labels for unseen instances. Extensive experiments on various data sets demonstrate the superiority of our proposed method.

How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: