A PHP Error was encountered

Severity: 8192

Message: Non-static method URL_tube::usage() should not be called statically, assuming $this from incompatible context

Filename: url_tube/pi.url_tube.php

Line Number: 13

KDD 2020 | Parameterized Correlation Clustering in Hypergraphs and Bipartite Graphs

Accepted Papers

Parameterized Correlation Clustering in Hypergraphs and Bipartite Graphs

Nate Veldt: Cornell University; David F. Gleich: Purdue University; Anthony Wirth: The University of Melbourne


Motivated by applications in community detection and dense subgraph discovery, we consider new clustering objectives in hypergraphs and bipartite graphs. These objectives are parameterized by one or more resolution parameters in order to enable diverse knowledge discovery in complex data.

For both hypergraph and bipartite objectives, we identify relevant parameter regimes that are equivalent to existing objectives and share their (polynomial-time) approximation algorithms. We first show that our parameterized hypergraph correlation clustering objective is related to higher-order notions of normalized cut and modularity in hypergraphs. It is further amenable to approximation algorithms via hyperedge expansion techniques.

Our parameterized bipartite correlation clustering objective generalizes standard unweighted bipartite correlation clustering, as well as the bicluster deletion problem. For a certain choice of parameters it is also related to our hypergraph objective. Although in general it is NP-hard, we highlight a parameter regime for the bipartite objective where the problem reduces to the bipartite matching problem and thus can be solved in polynomial time. For other parameter settings, we present several approximation algorithms using linear program rounding techniques. These results allow us to introduce the first constant-factor approximation for bicluster deletion, the task of removing a minimum number of edges to partition a bipartite graph into disjoint bi-cliques.

In several experimental results, we highlight the flexibility of our framework and the diversity of results that can be obtained in different parameter settings. This includes clustering bipartite graphs across a range of parameters, detecting motif-rich clusters in an email network and a food web, and forming clusters of retail products in a product review hypergraph, that are highly correlated with known product categories.

How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: