Accepted Papers

Non-Linear Mining of Social Activities in Tensor Streams

Koki Kawabata: ISIR, Osaka University; Yasuko Matsubara: ISIR, Osaka University; Takato Honda: ISIR, Osaka University; Yasushi Sakurai: ISIR, Osaka University


Given a large time-evolving event series such as Google web-search logs, which are collected according to various aspects, i.e., timestamps, locations and keywords, how accurately can we forecast their future activities? How can we reveal significant patterns that allow us to long-term forecast from such complex tensor streams? In this paper, we propose a streaming method, namely, CubeCast, that is designed to capture basic trends and seasonality in tensor streams and extract temporal and multi-dimensional relationships between such dynamics. Our proposed method has the following properties: (a) it is effective: it finds both trends and seasonality and summarizes their dynamics into simultaneous non-linear latent space. (b) it is automatic: it automatically recognizes and models such structural patterns without any parameter tuning or prior information. (c) it is scalable: it incrementally and adaptively detects shifting points of patterns for a semi-infinite collection of tensor streams. Extensive experiments that we conducted on real datasets demonstrate that our algorithm can effectively and efficiently find meaningful patterns for generating future values, and outperforms the state-of-the-art algorithms for time series forecasting in terms of forecasting accuracy and computational time.

How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: