Accepted Papers

Learning Based Distributed Tracking

Hao Wu: The University of Melbourne; Junhao Gan: The University of Melbourne; Rui Zhang: The University of Melbourne


Inspired by the great success of machine learning in the past decade, people have been thinking about the possibility of improving the theoretical results by exploring data distribution. In this paper, we revisit a fundamental problem called Distributed Tracking (DT) under an assumption that the data follows a certain (known or unknown) distribution, and propose a number Data-dependent algorithms with improved theoretical bounds. Informally, in the DT problem, there is a coordinator and k players, where the coordinator holds a threshold N and each player has a counter. At each time stamp, at most one counter can be increased by one. The job of the coordinator is to capture the exact moment when the sum of all these k counters reaches N. The goal is to minimise the communication cost. While our first type of algorithms assume the concrete data distribution is known in advance, our second type of algorithms can learn the distribution on the fly. Both of the algorithms achieve a communication cost bounded by O(k log log N) with high probability, improving the state-of-the-art data-independent bound O(k log N/k). We further propose a number of implementation optimisation heuristics to improve both efficiency and robustness of the algorithms. Finally, we conduct extensive experiments on three real datasets and four synthetic datasets. The experimental results show that the communication cost of our algorithms is as least as $20%$ of that of the state-of-the-art algorithms.

How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: