Accepted Papers

Heidegger: Interpretable Temporal Causal Discovery

Mehrdad Mansouri: Simon Fraser University; Ali Arab: Simon Fraser University; Zahra Zohrevand: Simon Fraser University; Martin Eser: Simon Fraser University


Temporal causal discovery aims to find cause-effect relationships between time-series. However, none of the existing techniques is able to identify the causal profile, the temporal pattern that the causal variable needs to follow in order to trigger the most significant change in the outcome. Toward a new horizon, this study introduces the novel problem of Causal Profile Discovery, which is crucial for many applications such as adverse drug reaction and cyber-attack detection. This work correspondingly proposes Heidegger to discover causal profiles, comprised of a flexible randomized block design for hypothesis evaluation and an efficient profile search via on-the-fly graph construction and entropy-based pruning. Heidegger’s performance is demonstrated/evaluated extensively on both synthetic and real-world data. The experimental results show the proposed method is robust to noise and flexible at detecting complex patterns.

How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: