Accepted Papers

Estimating the Percolation Centrality of Large Networks through Pseudo-dimension Theory

Andre Vignatti: UFPR; Murilo da Silva: UFPR; Alane de Lima: UFPR


Download

In this work we investigate the problem of estimating the percolation centrality of every vertex in a graph. This centrality measure quantifies the importance of each vertex in a graph going through a contagious process. It is an open problem whether the percolation centrality can be computed in O(n3-c) time, for any constant c>0. In this paper we present a ~O(m) randomized approximation algorithm for the percolation centrality for every vertex of G, generalizing techniques developed by Riondato, Upfal and Kornaropoulos. The estimation obtained by the algorithm is within ε of the exact value with probability 1- δ, for fixed constants 0 < ε,δ < 1. In fact, we show in our experimental analysis that in the case of real-world complex networks, the output produced by our algorithm is significantly closer to the exact values than its guarantee in terms of theoretical worst case analysis.

How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: