Accepted Papers

Dual Channel Hypergraph Collaborative Filtering

Shuyi Ji: Tsinghua University; Yifan Feng: Xiamen University; Rongrong Ji: Xiamen University; Xibin Zhao: Tsinghua University; Wanwan Tang: Baidu, Inc.; Yue Gao: Tsinghua University


Download

Collaborative filtering (CF) is one of the most popular and important recommendation methodologies in the heart of numerous recommender systems today. Although widely adopted, existing CF-based methods, ranging from matrix factorization to the emerging graph-based methods, suffer inferior performance especially when the data for training are very limited. In this paper, we first pinpoint the root causes of such deficiency and observe two main disadvantages that stem from the inherent designs of existing CF-based methods, i.e., 1) inflexible modeling of users and items and 2) insufficient modeling of high-order correlations among the subjects. Under such circumstances, we propose a dual channel hypergraph collaborative filtering (DHCF) framework to tackle the above issues. First, a dual channel learning strategy, which holistically leverages the divide-and-conquer strategy, is introduced to learn the representation of users and items so that these two types of data can be elegantly interconnected while still maintaining their specific properties. Second, the hypergraph structure is employed for modeling users and items with explicit hybrid high-order correlations. The jump hypergraph convolution (JHConv) method is proposed to support the explicit and efficient embedding propagation of high-order correlations. Comprehensive experiments on two public benchmarks and two new real-world datasets demonstrate that DHCF can achieve significant and consistent improvements against other state-of-the-art methods.

How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: