Accepted Papers

Diverse Rule Sets

Guangyi Zhang: KTH Royal Institute of Technology; Aristides Gionis: KTH Royal Institute of Technology


While machine-learning models are flourishing and transforming many aspects of everyday life, the inability of humans to understand complex models poses difficulties for these models to be fully trusted and embraced. Thus, interpretability of models has been recognized as an equally important quality as their predictive power. In particular, rule-based systems are experiencing a renaissance owing to their intuitive if-then representation.

However, simply being rule-based does not ensure interpretability. For example, overlapped rules spawn ambiguity and hinder interpretation. Here we propose a novel approach of inferring diverse rule sets, by optimizing small overlap among decision rules with a 2-approximation guarantee under the framework of Max-Sum diversification. We formulate the problem as maximizing a weighted sum of discriminative quality and diversity of a rule set.

In order to overcome an exponential-size search space of association rules, we investigate several natural options for a small candidate set of high-quality rules, including frequent and accurate rules, and examine their hardness. Leveraging the special structure in our formulation, we then devise an efficient randomized algorithm, which samples rules that are highly discriminative and have small overlap. The proposed sampling algorithm analytically targets a distribution of rules that is tailored to our objective.

We demonstrate the superior predictive power and interpretability of our model with a comprehensive empirical study against strong baselines.

How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: