Accepted Papers

Contagious Chain Risk Rating for Networked-guarantee Loans

Dawei Cheng: Shanghai Jiao Tong University; Zhibin Niu: Tianjin University; Yiyi Zhang: Shanghai Jiao Tong University


The small and medium-sized enterprises (SMEs) are allowed to guarantee each other and form complex loan networks to receive loans from banks during the economic expansion stage. However, external shocks may weaken the robustness, and an accidental default may spread across the network and lead to large-scale defaults, even systemic crisis. Thus, predicting and rating the default contagion chains in the guarantee network in order to reduce or prevent potential systemic financial risk, attracts a grave concern from the Regulatory Authority and the banks. Existing credit risk models in the banking industry utilize machine learning methods to generate a credit score for each customer. Such approaches dismiss the contagion risk from guarantee chains and need extensive feature engineering with deep domain expertise. To this end, we propose a novel approach to rate the risk of contagion chains in the bank industry with the deep neural network. We employed the temporal inter-chain attention network on graph-structured loan behavior data to compute risk scores for the contagion chains. We show that our approach is significantly better than the state-of-the-art baselines on the dataset from a major financial institution in Asia. Besides, we conducted empirical studies on the real-world loan dataset for risk assessment. The proposed approach enabled loan managers to monitor risks in a boarder view and avoid significant financial losses for the financial institution.

How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: