A PHP Error was encountered

Severity: 8192

Message: Non-static method URL_tube::usage() should not be called statically, assuming $this from incompatible context

Filename: url_tube/pi.url_tube.php

Line Number: 13

KDD 2020 | Adaptive Graph Encoder for Attributed Graph Embedding

Accepted Papers

Adaptive Graph Encoder for Attributed Graph Embedding

Ganqu Cui: Tsinghua University; Jie Zhou: Tsinghua University; Cheng Yang: Beijing University of Posts and Telecommunications; Zhiyuan Liu: Tsinghua University


Attributed graph embedding, which learns vector representations from graph topology and node features, is a challenging task for graph analysis. Recently, methods based on graph convolutional networks (GCNs) have made great progress on this task. However,existing GCN-based methods have three major drawbacks. Firstly,our experiments indicate that the entanglement of graph convolutional filters and weight matrices will harm both the performance and robustness. Secondly, we show that graph convolutional filters in these methods reveal to be special cases of generalized Laplacian smoothing filters, but they do not preserve optimal low-pass characteristics. Finally, the training objectives of existing algorithms are usually recovering the adjacency matrix or feature matrix, which are not always consistent with real-world applications. To address these issues, we propose Adaptive Graph Encoder (AGE), a novel attributed graph embedding framework. AGE consists of two modules: (1) To better alleviate the high-frequency noises in the node features, AGE first applies a carefully-designed Laplacian smoothing filter. (2) AGE employs an adaptive encoder that iteratively strengthens the filtered features for better node embeddings. We conduct experiments using four public benchmark datasets to validate AGE on node clustering and link prediction tasks. Experimental results show that AGE consistently outperforms state-of-the-artgraph embedding methods considerably on these tasks.

How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: