Accepted Papers

TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank

Rama Kumar Pasumarthi, Sebastian Bruch, Xuanhui Wang, Cheng Li, Michael Bendersky, Marc Najork, Jan Pfeifer, Nadav Golbandi, Rohan Anil and Stephan Wolf

Learning-to-Rank deals with maximizing the utility of a list of examples presented to the user, with items of higher relevance being prioritized. It has several practical applications such as large-scale search, recommender systems, document summarization and question answering. While there is widespread support for classification and regression based learning, support for learning-to-rank in deep learning has been limited. We introduce TensorFlow Ranking, the first open source library for solving large-scale ranking problems in a deep learning framework. It is highly configurable and provides easy-to-use APIs to support different scoring mechanisms, loss functions and evaluation metrics in the learning-to-rank setting. Our library is developed on top of TensorFlow and can thus fully leverage the advantages of this platform. TensorFlow Ranking has been deployed in production systems within Google; it is highly scalable, both in training and in inference, and can be used to learn ranking models over massive amounts of user activity data, which can include heterogeneous dense and sparse features. We empirically demonstrate the effectiveness of our library in learning ranking functions for large-scale search and recommendation applications in Gmail and Google Drive. We also show that ranking models built using our model scale well for distributed training, without significant impact on metrics. The proposed library is available to the open source community, with the hope that it facilitates further academic research and industrial applications in the field of learning-to-rank.


How can we assist you?

We'll be updating the website as information becomes available. If you have a question that requires immediate attention, please feel free to contact us. Thank you!

Please enter the word you see in the image below: