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ABSTRACT

Predicting the popularity of online items has been an im-
portant task to understand and model online popularity
dynamics. Feature-based methods are one of the mainstream
approaches to tackle this task. Although many efforts have
been made, the solutions to three key issues still remain un-
clear or need improvement, i.e., what kind of general contexts
can be used, how to represent the contexts in a general form,
and how to effectively leverage the contexts for prediction.
To address these issues, we propose to link online items with
existing knowledge base (KB) entities, and leverage KB in-
formation as the context for improving popularity prediction.
We represent the KB entity by a latent vector, encoding
the related KB information in a compact way. We further
propose a novel prediction model based on LSTM networks,
adaptively incorporating KB embedding of the target entity
and popularity dynamics from items with similar entity infor-
mation. Extensive experiments on three real-world datasets
demonstrate the effectiveness of the proposed model.

CCS CONCEPTS

e Information systems — Data mining;
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1 INTRODUCTION

With the rapid development of Web platforms, various online
items (a.k.a., online content), such as AMAZON e-books and
YOUTUBE videos, are available to users. The increasing of
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online items has intensified the competition for users’ atten-
tion [29], since only a small number of items become popular.
In order to better understand and model online popularity
dynamics, the task of predicting the popularity of web con-
tent [20, 28] has become very important and attracted much
attention from the research community.

Traditional methods try to build prediction models (e.g.,
regression models) on time series data of historical popularity
statistics [28]. Since web content is usually associated with
rich contexts, many studies further leverage different fea-
ture information for improving prediction, including content
features [23], user features [33], structural features [12] and
spatial features [8]. These feature-based approaches utilize
both time series and context data in order to learn a better
prediction model. However, they usually rely on hand-crafted
extraction rules or platform-dependent content characteris-
tics, it is not flexible to apply them to a broad spectrum of
data domains. Furthermore, these methods extend traditional
machine learning algorithms, and may not be effective to
fully utilize context information due to complex data charac-
teristics. For popularity prediction with context information,
we have to consider three important issues: (1) what kind of
general contexts to be used, (2) how to represent the contexts
in a unified and compact way, and (3) how to integrate and
utilize the contexts.

To address these difficulties, in this paper, we propose to
leverage knowledge bases (KB) for improving the prediction of
the popularity of online items. KBs store entity information in
triples of the form (HEAD ENTITY, RELATION, TAIL ENTITY),
typically corresponding to entity attributes. Compared with
traditional data forms, KBs provide a general way to flexi-
bly characterize context information of entities from various
domains, and emphasize the interconnection of data. Many
large-scale KBs have been released for public usage, such
as FREEBASE [7] and YAGO [27]. By linking the items from
online platforms with the entities from existing KBs, we are
able to utilize rich KB information of online items from a
variety of domains'. For example, by querying FREEBASE
search API with the ISBN number, we can accurately associate

!n addition to reusing KB information, we can also extract new context
information, represent it in the form of KB triples, and integrate them
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an AMAZON online book with a unique entity in FREEBASE,
and then obtain its KB information (e.g., the authors) via
reading out all the related KB triples. We hypothesize KBs
are of valuable information to improve popularity prediction
of online content.
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(a) Partially similar trends. (b) Completely similar trends.

Figure 1: Popularity dynamics comparison between
two example pairs of items with similar entity infor-
mation. These four items (i.e., songs) are selected
from Last.fm music dataset [Schedl, 2016] and the
y-axis corresponds to the number of listening count.
Songs in each pair are from the same singer. The
two songs of the first pair deviate from each other
at the beginning and then becomes similar finally.

The key point of our approach is how to design the pre-
diction model which can effectively integrate popularity time
series with KB information. Following [2, 13, 17, 18, 31], we
propose to learn vectorized representations (a.k.a., KB em-
bedding) for entities and relations in a latent space. In this
way, we encode related KB information of an online item
into a compact embedding vector. Then, inspired by recent
works on deep learning for popularity prediction [14, 16], we
adopt the commonly used Long-Short Term Memory (LSTM)
networks as the base architecture to develop our predictor.
While, it is not trivial to integrate the KB embedding into
the LSTM network. We present an example in Fig. 1. As we
can see, two online items with similar entity information are
likely to have either similar or dissimilar popularity trend-
s at varying time steps. Hence, an ideal prediction model
should adaptively integrate and utilize the KB information,
extracting useful data characteristics and removing irrelevant
information from KB embedding for the prediction task. To
achieve this, our solutions are two folds. First, we propose
to use the gate mechanism to integrate time series with KB
data, which tries to learn an adaptive combination between
the two parts conditioned on the current state. Second, we
propose to incorporate the popularity dynamics of the items
with similar KB information via the attention mechanism.
Our model effectively utilize the KB data and adaptively
integrate it into the prediction model.

We summarize the contributions of this paper as follows.
First, we propose to link online items with KB entities, and
leverage KB information for improving online popularity pre-
diction. To our knowledge, it is the first time KB information

into existing KBs. In this paper, we only focus on using existing KB
information.
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is utilized in popularity prediction. Second, we propose a
novel prediction model based on the LSTM networks, which
effectively incorporates the KB embedding of the target item
and the popularity dynamics of its similar KB entities. Third,
extensive experiments on three real-world datasets demon-
strate the effectiveness of the proposed model compared with
several competitive baselines.

2 RELATED WORK

In this section, we review the related studies for popularity
prediction.

A classic approach to popularity prediction is to build
regression or classification prediction models [20, 28] by tak-
ing as input the previous popularity statistics. They make
the predictions by characterizing temporal dependence or
correlation patterns in the time series data. Since simple
prediction models may not be effective to capture complex
temporal characteristics, follow-up studies have introduced
a series of more powerful prediction models, such as rein-
forced Poisson process [25], multi-dimensional time-series
model [21], lifetime-aware regression model [19] and transfer
autoregressive model [4]. With rich context data on the Web,
many studies propose to leverage these auxiliary features
for improving popularity prediction [5], including content
features [23], user features [33], structural features [12] and
spatial features [8].

Recently, deep learning has become a popular technique
to address various complicated tasks. A typical deep learning
approach to popularity prediction is to utilize Recurrent
Neural Networks (RNN) to capture temporal dependence
and build better predictions [14, 22, 26, 30, 34]. They mainly
rely on the excellence of RNN in modeling sequence data.
Furthermore, several studies also adopt neural networks as
a transformer to leverage various features for popularity
prediction, including event signal [6], cascade path [3], cascade
graph [16] and multi-modality information [32].

Our work is closely related to the above works. While, we
have a different focus, i.e., how to leverage KB information
for improving popularity prediction. Although context infor-
mation has be explored to some extent, to our knowledge,
no work has utilized KB data for popularity prediction. As
will be shown in the model and experiment parts, it is not
trivial to integrate and model KB information into the pre-
diction model. We have made the initiative attempt on this
direction.

3 PROBLEM DEFINITION

Let Z denote a set of items on an online platform, e.g., ebook
on AMAZON or music on LAST.FM. An observation window
[1,n] of n time steps (a.k.a., intervals) is given®. At the t-th
time step, each individual item 7 receives a value measuring its
popularity within the current step, denoted by vi. Popularity
values reflect the received online attention for an item, e.g.,
the number of reviews or clicks. By sorting these values by

2Note we use 1 to n to indicate a relative time span. Not all the items
share the same absolute time span (i.e., lifespan).
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time ascendingly, we can form a time series of popularity
values for item 4, namely {vi,--- v}, v} }, called popularity
time series. We are often interested in future popularity. Let
U:‘l_’m denote the incremental popularity in the m steps after
time n, so we have vfhm = ?;:11 ol

Besides popularity time series, we assume that a knowledge
base (KB) is also available as the input. A KB is defined
over an entity set V and a relation set R, containing a set
of KB triples. A KB triple (e1,r,e2) denotes there exists
relation r from R between two entities e; and ez from V,
stating a fact stored in KB. For example, a KB triple (CHINA,
HASCAPITALCITY, BEIJING) describes that Beijing is the
capital city of China. Since we assume it is possible to link
online items with KB entities, item set Z can be considered
as a subset of KB entity set V, so we have Z C V. By linking
an item with a KB entity, we can obtain all its related KB
information.

Knowledge-based popularity prediction is to predict the
incremental popularity value vf%m for an item ¢ after m time
steps given previous n popularity values and its KB infor-
mation. Following [3], we predict the incremental popularity
to avoid data dependency. Our definition is general in that
we parameterize the task setting with two numbers n and
m. When m = 1, the task becomes the next-step popularity
prediction; when m = 400, the task becomes final popu-
larity prediction. Also, the granularity of time steps (e.g.,
day, month or year) and the scale of popularity values (e.g.,
absolute or normalized values) can be set accordingly for
different tasks. We will specify the details in Section 5.

4 THE PROPOSED MODEL

In this section, we present the proposed model for the task
of knowledge-based popularity prediction. We start with a
base model which adopts the standard LSTM architecture,
and then extend the model by incorporating KB information
in two aspects, namely KB embedding and KB neighbors.

The notations we will use throughout the article are sum-
marized in Table 1.

Table 1: Notations and explanations.

Notation Explanation
T item set
\% entity set in a KB
R relation set in a KB
T a relation in R
r embedding vector of relation r
i an item in D
e; the corresponding entity of item ¢ in a KB
e; embedding vector of entity e;
t time index
k KB neighbor index
v; the popularity value of item 7 at time ¢
’U;,m the m—step incremental popularity of item ¢ at time n
h:z hidden state of item ¢ using LSTM at time n
h,’fL hidden state of KB neighbor k using LSTM at time n
ﬁ;b hidden state of item ¢ using LSTM with KB embedding
s;’z final representation of item ¢ at time n
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4.1 A LSTM-based Popularity Prediction
Model

Recurrent Neural Networks (RNN) have been shown effec-
tive to capture and characterize the temporal dependence
in sequence data, especially the Long Short Term Memory
(LSTM) networks [11]. Similar to RNN, the LSTM network
generates current hidden state vector h; conditioned on pre-
vious hidden state vector h:—1 and current input vector x,
so we have

hi = LSTM(hi—1,:; ©), (1)

where LSTM(-) is the LSTM unit and © denotes all the
related parameters. By adding input, forget and output gates,
LSTM can better capture long sequence dependence. Hence,
we adopt the LSTM network as the main architecture to
build the prediction model.

For our task, the input at each time ¢ is the observed
popularity value v{. In this case, «; degenerates into a scalar
value. Our task is specified by two numbers n and m. For
item i, when LSTM receives n input values, it makes the
prediction of m-step incremental value @Z‘hm using a function
g(-) conditioned on the n-th hidden state vector hl, € RY of
item 4. Formally, we have

Onm = g(hn), (2)
where the superscript of 7 indicates item 4 and g(-) is set to
a linear function.

4.2 Enhancing Prediction with KB
Embeddings

The above prediction model mainly captures the temporal
correlation or dependence in time series data. In our setting,
we also have KB data available, which contains potentially
useful information for popularity prediction. Next, we study
how to integrate KB information into the prediction model.

4.2.1 Knowledge Base Embedding. Given an online item
i, let e; denote its corresponding entity in KB. Since KB is
originally framed as a set of triples, we can obtain a set of
related triples where e; plays the head or tail entity. Using
the related triples, the first solution is to represent each e;
by a one-hot relation-based vector. However, such a feature
vector has a large dimension size and is usually sparse. For
effectively encoding KB information for e;, we propose to
learn a distributed vector e; € RP. To learn KB embedding,
we use the commonly used model TRANSE [2] to minimize
the loss of the triples

Y llertr—ez|. 3)

{(e1,re2)}
We train the TRANSE model using all the triples in KB instead
of using only those related to linked entities. The learned KB
embedding provides a general and compact representation for
KB information, which is more flexible to use and integrate.
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4.2.2 Gate-based Integration of KB Embeddings. Now, we
study how to integrate KB embedding into the LSTM-based
prediction model. For popularity prediction, KB embedding
is likely to contain both useful and irrelevant information,
even noise. It may not work well to directly incorporate the
KB embedding into the prediction model. To leverage KB
embedding e;, we first transform it into a vector that is more
suitable for the current task

where MLP(+) is a standard Multi-layer Perceptron containing
two hidden layers and using relu as the activation function
in our work.

For item 4, we have both the hidden state vector h}, learned
from time series data and the transformed embedding é;
learned from KB data. We need to consider how to effectively
combine these two vectors. Instead of setting a fixed weight,
the model should be able to adaptively tune the combina-
tion weight based on the current state. To achieve this, we
adopt the gate mechanism to combine the transformed KB
embedding €; and hidden state vector h;

zi = sigmoid(W¥é; + U"h},), (5)
hy, = zn-€+(1—2z,) hy, (6)

where 25 € (0,1) is the adaptive combination weight, W
and UF are parameter matrices, and ﬁ; is the KB-enhanced
representation of item 4 at the n-th time step.

In our model, we first adopt nonlinear transformation to
learn suitable representations of KB embedding for popularity
prediction. Then, the gate mechanism tries to balance the two
factors conditioned on the current hidden state. A benefit of
the gate-based combination method is that even for the same
item we can have different combination weights at varying
time steps, adaptively integrating KB information.

4.3 Enhancing Prediction with KB
Neighbors

Till now, our prediction model only utilizes the information
from the target item itself. Figure 1(a) shows that two items
with similar KB information are likely to have similar popu-
larity dynamics. Hence, we further propose to incorporate the
popularity dynamics of related items with similar entity in-
formation to improve popularity prediction. For convenience,
we call two items in the same domain with similar KB in-
formation KB neighbors. Now, our problems become how to
identify KB neighbors and integrate the information of KB
neighbors for popularity prediction.

4.3.1 KB Neighbor Identification. To measure the related-
ness (or similarity) between two items using KB data, an
intuitive idea is to compute the path reachability over the
KB graph. However, the KB graph is usually very huge, and
it is item-consuming to run graph search algorithms for each
individual entity. Based on the learned KB embedding, we
propose to compute the distance between entity embeddings
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for measuring item relatedness. Formally, given two entities
e1 and ez, we compute the KB embedding distance via a
distance function f(e1,ez2), where f(-) can be flexibly set to
any distance function for vectors, e.g., cosine and L; norm.
In this way, we can rank the candidate items ascendingly by
their KB embedding distance with the target item. Our idea
is similar to that in [20]. They select the neighbors based on
historical popularity trends, highly relying on the training
set; while we select the neighbors using KB information, in-
dependent of historical popularity trends. In order to reduce
data dependency, we further remove all the candidate items
which has a prolonging lifetime with the target entity. For
efficiency consideration, we only keep top K related entities
of the entity type as KB neighbors.

4.3.2 Attention-based Integration of KB Neighbors. With
the identified KB neighbors, we next describe how to utilize
the information of KB neighbors for improving the prediction.
Given a target item, its KB neighbors are likely to share sim-
ilar popularity dynamics. Hence, it is intuitive to incorporate
their popularity dynamics into the prediction model. For each
neighbor k, we still use the LSTM network to encode their
popularity dynamics up to the n-th time step into a hidden
vector

hy = LSTM ({1, v, };©), (7)
where we use a different configuration © for the LSTM net-
work compared with the one for encoding the target item,
because h¥s are mainly used to improve the prediction for
item 7 instead of item k itself. To integrate multiple hidden
vectors of KB neighbors, we adopt the attention mechanis-
m [1] to set the summation weights {o} conditioned on item
i. Formally, o is defined as follows

GXP(UJ(hi“ ék))
S (exp(w(hi,, &)
where h, is the derived hidden state vector of item ¢ using
only time series dat_a, €y, is the transformed KB embedding
of item k, and w(hy, €) is set using the following function

; (®)

i
Qp —

w(hi, &) = a' tanh(WV R, + UV &), (9)
where WY and U¥ are the parameter matrices, and a is the
parameter vector. With the obtained attentive weights, we
can encode the information from the K KB neighbors into a
unique vector hj,:

K
by, => aj - h,. (10)
k=1

Finally, our item representation s¢, for popularity predic-
tion is a vector concatenation of h;, and hy,,

sn = hy, @ hy,, (11)
where h? is the representation learned using only the in-
formation from the item itself (including both time series
and KB data) defined in Eq. 6 and h;, is the representation
learned using K KB neighbors defined in Eq. 10. Similar
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to the gate mechanism in Section 4.2, our model adaptively
set the attention weights conditioned on the current hidden
state. It is able to alleviate the problem in Fig. 1(a), in which
items have different popularity dynamics correlation at vary-
ing time steps. The attention mechanism can be viewed a
key-value retrieval procedure, where the query h’, is the time
series representation of the target item, and the keys {ék}le
are the transformed KB embeddings of KB neighbors. The
derived result is the attentive combination of time series rep-
resentations of KB neighbors {hﬁ}?zl. By using non-linear
query-key matching mechanism in Eq. 15, our model is more
capable of inferring the usefulness of each KB neighbor for
the target item. Since we filter out neighbors with a prolong-
ing lifetime, our model will not use any information after
the observed window. After obtaining s’,, we still adopt the
linear function g(s}i) to generate the final prediction.

‘We present the overall schematic diagram of the proposed
model in Fig. 2. It is clear to see that the model consists of
two parts: one utilizes the information of the target item itself,
and the other utilizes the information of its KB neighbors. KB
information is used in both aspects. First, it is transformed as
a direct signal to enhance the prediction; second, it is used as
the keys of the attention module. We call the proposed model
KB-enhanced Popularity Prediction Network (KB-PPN).

4.4 Model Learning

We define the loss over the training set as follows

L=3 S i), (12)

i€Z te[l,n]

where D is the item set, vfﬁm and ﬁi,m are the ground-truth
or predicted incremental popularity value for item ¢ in the
time span (t,t + m], and ¢(-) is the loss function, which is set
to Mean Absolution Error. We learn our model parameters by
using mini-batch gradient descent with the Adam optimizer.

5 EXPERIMENTS AND ANALYSIS

This section present the experiment setup and result analysis.

5.1 Experimental Setup

5.1.1 Construction of the Datasets. In our task, we need
to prepare both KB and popularity time series data. For KB
data, we adopt the one-time FREEBASE [7] dump consists of
63 million triples. For popularity time series data, we use
three item popularity datasets, namely LAST.FM music [24],
MOVIELENS movie [9] and AMAZON book [10]. To measure the
popularity value, for the music dataset, we use the listening
count, while for the other two datasets, we use the number of
received ratings. It is uninteresting to predict the popularity
of items with either a small popularity value or a short
lifespan. We rank the items by its total popularity, and
then select top items covering at least 40% of the entire
time span of the dataset. Then, we link online items with
FREEBASE entities. With an offline FREEBASE search API,
we retrieve book entities with the ISBN number as queries,
and retrieve music or movie entities with the item title as
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queries. It is likely to return multiple matched entities, and we
further incorporate other attribute information (e.g., singer
or director) to filter the candidates until a single matched
entity has been left. For the three datasets, we find 62.5%,
77.1% and 55.7% selected items can be linked to FREEBASE
entities respectively. To train TRANSE, we start with linked
entities as seeds and expand the graph with one-step search.
In order to exclude temporal evidence from KB, we remove all
the triples related to a temporal relation (e.g., RELEASEDATE)
together with the entities in the triples. By inspecting into
the original datasets, we have found that a linked item has a
larger popularity than an non-linked item on average, which
indicates the more popular an item is, the more likely it is to
be included in KBs. For the music dataset, we use a month as
a time step; while the other datasets are much more sparse,
we use a year as a time step. For each linked item, we build
the popularity time series by time steps. Following [20], we
construct the ten-fold cross validation for evaluation. The
final results are averaged from ten runs. We summarize the
detailed statistics of the three linked datasets after filtering
in Table 2.

Table 2: Statistics of our datasets. APPS denotes the
average popularity value per step.

Datasets #selcted #linked Time span (yr.) APPS
Music 37,000 23,120 2006-2014 577
Movie 12,000 9,260 1995-2015 277
Book 4,000 2,228 1997-2014 41

5.1.2 Evaluation Metrics. Following [20], we adopt three
standard measurements as evaluation metrics:
e Mean Absolute Percentage Error (MAPE) measures
the average derivation between the predicted and ob-
served popularity over all items, defined as

N g i
1 Un,m — Unm
MAPE = — —_—. 13
D (13)
e Accuracy measures the fraction of items correctly pre-

dicted for a given error tolerance ¢, defined as

1 N P A
a00 = LSt o g ()
i=1 n,m

We set the threshold € = 0.15 in this paper.
e Mean Relative Squared Error (mRSE) measures the

relative error between the predicted and observed pop-

ularity, defined as

~%

N
1 Un,'m.
mRSE = ;:1:( L )2, (15)

Vn,m
5.1.3 Comparison Methods. The comparison methods are
as follows.
e Multivariate Linear Regression (MLR) [20]: it predicts
the popularity of an item using a linear combination
of previous popularity values.
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Target item

Popularity time series
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Figure 2: The overall schematic diagram of the proposed model.

e MRBF [20]: it is an extension of the basic MLR model
by considering the similarity between the item and
known examples from training set.

e Support Vector Regression (SVR) [15]: Khosla et.al.
adopt SVR model using linear kernel to predict popu-
larity with time series data as features.

e Random Forest (RF): We use RF to predict the popu-
larity of online articles. RF adopt a tree-based ensemble
approaching to capture complex data characteristics.

e Long Short-Term Memory (LSTM) [11]: LSTM im-
proves RNN with a better capacity of encoding long
sequences.

e The State Frequency Memory (SFM) [34]: it is the
extension of the basic LSTM model by capturing multi-
frequency time series patterns, which is a recently pub-
lished work on dynamics prediction.

e Our model: we prepare three variants of our model:
(1) only using KB embedding in Eq. 6, denoted by
KB-PPN, g, (2) using both KB embedding in Eq. 6
and KB neighbors in Eq. 7 without attention, denoted
by KB-PPN4gyn, and (3) our full model in Eq. 11,
denoted by KB-PPN¢,;.

For MLR, SVR and LSTM, we also implement the corre-
sponding variants by directly integrating KB embedding as
features, denoted by MLR1 g, SVR4+ £ and LSTM, g (using
simple concatenation).

5.1.4 Parameter Setting. All the models have some param-
eters to tune. We either follow the reported optimal parameter
settings or optimize each model separately using 10-fold cross
validation. For all the neural network models, following [16],
we vary the hidden layer size L in {32,064, --- ,512}, the num-
ber of hidden layers in {1,2,3}, the activation function in
{relu, tanh, sigmoid}, the batch size in {64,128, --,1024},
and the initial learning rate in {0.02,0.01,--- ,107*}. The em-
bedding size of TRANSE D is selected from {50, 100, - - - , 300},
and the number of neighbors K is selected from {1,2,3,4,5}.
In order to avoid over-fitting, the dropout rate is chosen from
{0.2,0.3, ..., 0.8}

5.2 Results and Analysis

We present the main comparison results of different methods
for popularity prediction in Table 3. Since different datasets
have varying time spans and popularity scales, we set different
values for n and m3. For ease of result analysis, we categorize
the comparison methods into two groups, namely traditional
methods and neural network methods.

Among all the traditional baselines, SVR and RF perfor-
m better than the others, since they adopt more powerful
modeling mechanisms (i.e., margin-based optimization or
tree-based non-linear transformation) and are likely to yield
better performance. Another interesting observation is that
the improvement of KB embedding using MLR is smaller
than that of using SVR and RF. It indicates that the learned
embedding may not be directly useful in linear prediction
models, which confirms to our intuition.

For neural network models, SFM achieves a better perfor-
mance than LSTM, since it is able to capture multi-frequency
time series patterns. Next, we examine the the effect of dif-
ferent ways to integrate KB embeddings of the target item.
It is clear to see that KB-PPN. g is substantially better
than LSTM g. The major difference is that our model KB-
PPN g adopts a gate mechanism to integrate KB embedding,
while LSTM4 g simply adopts a vector concatenation, which
is less effective to utilize the information of KB embedding.
By additionally integrating the information of KB neighbors,
KB-PPN4 gty and KB-PPNyy;; perform better than all the
other comparison methods, which indicates the usefulness
of KB neighbors. While, KB-PPN,;; further improves over
KB-PPN_ g4~ due to the use of attention mechanisms. The
above findings show that the KB information is useful to im-
prove popularity prediction. In particular, the integration way
of these information is important to the final performance.

Recall our task is parameterized with two additional num-
bers of n and m. A good prediction model should be able to
work well in various cases of n and m. To examine the perfor-
mance stability of our model, we vary n and m alternatively,
and compare our method with baselines. Due to space limit,

3Recall n is the number of previous steps (seen) and m is the number
of future steps (predicted).
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Table 3: Performance comparisons of different methods on popularity prediction. “ | /1”7 indicate smaller is
better or worse. “” ,”#” indicates the improvement of KB — PPN, and KB — PPNy, over the baseline is
significant at the level of 0.01. We also report the improvement ratios over the comparison baselines from

KB — PPNyg and KB — PPNy, in parentheses.

ACC (1)

MRSE (})

0.4507-# (8.44%, 11.3%)
0.456%# (7.02%,9.87%)
0.461%# (5.86%, 8.68%)
0.461%# (5.86%.8.68%)
0.471%:# (3.61%, 6.37%
0.4661-# (4.72%,7.51%
0.468%:# (4.27%,7.05%

0.079%:# (13.9%, 21.5%)
0.078"# (12.8%, 20.5%)
0.079%:# (13.9%, 21.5%)
0.078"# (12.8%, 20.5%)
0.0741# (8.10%, 16.2%)
0.0761# (10.5%, 18.4%)
0.0757# (9.33%, 17.3%)

0.469%:# (4.05%, 6.82%

)
)
)
0.458T# (6.55%, 9.39%)
)
0.469%# (4.05%, 6.82%)

0.0767# (10.5%, 18.4%)
0.0751%# (9.33%, 17.3%)
0.075%%# (9.33%, 17.3%)

0.488
0.494
0.501

0.068
0.066
0.062

0.4277# (16.9%, 18.3%
0.4277# (16.9%,18.3%
0.452%:# (10.4%, 11.7%
0.4607# (8.48%,9.78%
0.463%# (7.78%,9.07%

0.4607:# (8.48%,9.78%

0.0807# (27.5%, 32.5%)
0.0801:# (27.5%, 32.5%)
0.0751# (22.7%, 28.0%)
0.070"# (17.1%, 22.9%)
0.068"# (14.7%, 20.6%)
0.0781:# (25.6%, 30.1%)
0.0771# (24.7%, 29.9%)

0.488T# (2.25%, 3.48%
0.4825# (3.53%,4.77%

)
)
)
)
)
0.460T# (8.48%,9.78%)
)
)
)
0.495T# (0.81%, 2.02%)

0.0647# (9.37%, 15.6%)
0.0631:# (7.94%, 14.3%)
0.0621:%# (6.45%, 12.9%)

0.499
0.491
0.505

0.058
0.059
0.054

0.324%# (19.1%, 22.5%
0.344%# (12.2%, 15.4%
0.3417# (13.2%,16.4%
0.337%:# (14.5%, 17.8%

0.367%:# (5.18%,8.17%
0.360"# (7.22%,10.3%

0.130T:# (27.7%, 34.6%)
0.119%:# (21.0%, 28.6%
0.1151# (18.3%, 26.1%
0.111%# (15.3%, 23.4%
0.105%# (10.5%,19.1%

0.1061# (11.3%,19.8%

0.348T# (10.9%, 14.1%
0.3557# (8.73%,11.8%

)
)
)
)
0.3617# (6.93%,9.97%)
)
)
)
)
0.374%# (3.21%, 6.15%)

0.1047# (9.62%, 18.3%
0.1017# (6.93%,15.8%

)
)
)
)
0.1121# (16.1%, 24.1%)
)
)
)
0.0961:# (2.08%, 11.5%)

0.386
0.391
0.397

0.094
0.090
0.085

Dataset Models MAPE ({)
MLR 0.212%:# (7.55%, 10.8%)
MLR, g 0.2115# (7.11%,10.4%)
MRBF 0.210%# (6.67%, 10.0%)
SVR 0.209"# (6.22%,9.57%)
SVR, g 0.2041# (3.92%, 7.35%)
. RF 0.206"# (4.85%,8.25%
Music (n=3,m =9) | gp 0.2061:# E4.85%, 8.25%;
LSTM 0.2087# (5.77%,9.13%)
SFM 0.2067# (4.85%, 8.25%)
LSTM g 0.205%# (4.39%, 7.80%)
KB-PPN, & 0.196
KB-PPN, g, n | 0.193
KB-PPN;,;; 0.189
MLR 0.2227# (15.3%,18.0%)
MLR. g 0.2227# (15.3%,18.0%)
MRBF 0.2125# (11.3%,14.2%)
SVR 0.206T# (8.74%,11.7%)
SVR. g 0.2041:# (7.84%, 10.8%)
. RF 0.2117# (10.9%, 13.7%
Movie (n =2,m =4) | gp 0.2091# 510.1%, 12.9%3
LSTM 0.1967# (4.08%, 7.14%)
SFM 0.195%:# (3.59%, 6.67%)
LSTM, g 0.1927# (2.08%,5.21%)
KB-PPN, g 0.188
KB-PPN, g, n | 0.189
KB-PPNy,; 0.182
MLR, 0.2887# (16.0%, 19.4%)
MLR, g 0.273%# (11.4%, 15.0%)
MRBF 0.2725# (11.0%,14.7%)
SVR, 0.269"# (10.0%, 13.8%)
SVR. g 0.257"# (5.84%,9.73%)
RF 0.2617# (7.28%,11.1%)
Book (n=2,m =4) | ppp 0.2571%# (5.84%, 9.73%)
LSTM 0.2617# (7.28%, 11.1%)
SFM 0.256"# (5.47%,9.37%)
LSTM, g 0.246%# (1.63%, 5.69%)
KB-PPN, g 0.242
KB-PPN, g, n | 0.238
KB-PPNy,y 0.232

we only report the tuning results on the music dataset. As
shown in Fig. 3, we can see that our model is consistently bet-
ter than the selected baselines in various cases, indicating the
robustness of the proposed model. Our model KB-PPNy,;
have several parameters to tune, including the number of KB
neighbors K, the KB embedding size D and the hidden layer
size L. We find the number of KB neighbors should be set
to a small value. In our experiments K = 3 yields the best
performance. Next, we tune D and L alternatively. In Fig. 4,
we can see D = 100 and L = 128 gives the best performance.
Overall, the performance of our model is relatively stable by
varying L and D, consistently better than the baselines.

6 CONCLUSION

In this paper, we proposed to heuristically link online item-
s with existing KB entities, and leverage KB information
for improving popularity prediction. Our experiment results
showed that both KB embedding of the target item and pop-
ularity dynamics of its KB neighbors are useful to enhance
the prediction. As future work, we will test the proposed
approach in more domains. Since not all the entities can find
corresponding KB entries, it will be interesting to study how
to enhance the prediction performance of non-linked items
with KBs. We will also extend the base LSTM network to
more complicated network such as SFM [34].
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Figure 3: Performance tuning by varying the number
of previous steps n and the number of future steps
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Figure 4: Performance tuning by varying the KB
embedding size D and the hidden layer size L.
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