
MTNet: A Neural Approach for Cross-Domain
Recommendation with Unstructured Text

Guangneng Hu, Yu Zhang, and Qiang Yang
Department of Computer Science and Engineering, Hong Kong University of Science and Technology

njuhgn@gmail.com,yu.zhang.ust@gmail.com,qyang@cse.ust.hk

ABSTRACT
Collaborative filtering (CF) is the key technique for rec-
ommender systems (RSs). CF exploits user-item behavior
interactions (e.g., clicks) only and suffers from the data spar-
sity issue. One solution is to integrate the content information
such as product reviews and news titles, leading to hybrid
filtering methods. Another solution is to transfer knowledge
from a related source domain such as improving the movie
recommendation with the knowledge of the book domain,
leading to cross-domain methods where transfer learning is
a key technique. In real life, no single service can satisfy a
user’s all information needs. Thus it motivates us to exploit
information from both the content and across domains for
RSs in this paper. We achieve this by developing approaches
to capture the text content and to transfer cross-domain
knowledge. We propose a novel neural model, MTNet (“M”
for memory and “T” for transfer), for cross-domain recom-
mendation with unstructured text in an end-to-end manner.
MTNet can attentively extract useful content via a memo-
ry network (MNet) and can selectively transfer knowledge
from across domains by a transfer network (TNet), a novel
network. The principle underlying these two components is
the neural attention mechanism. A shared layer of feature
interactions is stacked on the top to couple the high-level
representations learned from individual networks. On two
real-world datasets, MTNet shows better performance in
terms of three ranking metrics by comparing with various
baselines, including single/cross domain, shallow/deep, and
hybrid methods. We conduct thorough analyses to under-
stand how the text content and transferred knowledge help
the proposed model.

1 INTRODUCTION
Recommender systems are widely used in various domains
and e-commerce platforms, such as to help consumers buy
products at Amazon, watch videos on Youtube, and read ar-
ticles on Google News. Collaborative filtering (CF) is among
the most effective approaches based on the simple intuition
that if users rated items similarly in the past then they are

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD’18 Deep Learning Day, August 2018, London, UK
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

likely to rate items similarly in the future. Matrix factoriza-
tion (MF) techniques which can learn the latent factors for
users and items are its main cornerstone [16, 22]. Recently,
neural networks like multilayer perceptron (MLP) are used
to learn the interaction function from data [6, 10]. MF and
neural CF suffer from the data sparsity and cold-start issues.

One solution is to integrate CF with the content informa-
tion, leading to hybrid methods. Items are usually associated
with content information such as unstructured text, like the
news articles and product reviews. These additional sources
of information can alleviate the sparsity issue and are essen-
tial for recommendation beyond user-item interaction data.
For application domains like recommending research papers
and news articles, the unstructured text associated with the
item is its text content [1, 30]. Other domains like recom-
mending products, the unstructured text associated with the
item is its user reviews which justify the rating behavior
of consumers [20, 36]. Topic modelling and neural networks
have been proposed to exploit the item content and lead to
performance improvement. Memory networks are widely used
in question answering and reading comprehension to perform
reasoning [28]. The memories can be naturally used to model
additional sources like the item content [14], or to model a
user’s neighborhood who consume the common items with
this user [7].

Another solution is to transfer the knowledge from relevant
domains and the cross-domain recommendation techniques
address such problems [2, 17, 24]. In real life, a user typically
participates several systems to acquire different information
services. For example, a user installs applications in an app
store and reads news from a website at the same time. It
brings us an opportunity to improve the recommendation
performance in the target service (or all services) by learning
across domains. Following the above example, we can rep-
resent the app installation feedback using a binary matrix
where the entries indicate whether a user has installed an app.
Similarly, we use another binary matrix to indicate whether
a user has read a news article. Typically these two matrices
are highly sparse, and it is beneficial to learn them simul-
taneously. This idea is sharpened into the collective matrix
factorization (CMF) [27] approach which jointly factorizes
these two matrices by sharing the user latent factors. It com-
bines CF on a target domain and another CF on an auxiliary
domain, enabling knowledge transfer [23, 35]. In terms of
neural networks, given two activation maps from two tasks,
cross-stitch convolutional networks (CSN) [21] learn linear
combinations of both the input activations and feed these

https://doi.org/10.1145/nnnnnnn.nnnnnnn

KDD’18 Deep Learning Day, August 2018, London, UK Guangneng Hu, Yu Zhang, and Qiang Yang

combinations as input to the successive layers’ filters, and
hence enabling the knowledge transfer between two domains.

Thus it motivates us to exploit information from both
the content and cross-domain information for RSs in this
paper. To capture text content and to transfer cross-domain
knowledge, we propose a novel neural model, MTNet, for
cross-domain recommendation with unstructured text in an
end-to-end manner. MTNet can attentively extract useful
content via a memory network (MNet) and can selectively
transfer knowledge across domains by a transfer network (T-
Net), a novel network. A shared layer of feature interactions
is stacked on the top to couple the high-level representations
learned from individual networks. On real-world datasets,
MTNet shows the better performance in terms of ranking
metrics by comparing with various baselines. We conduct
thorough analyses to understand how the content and trans-
ferred knowledge help MTNet.

To the best of our knowledge, MTNet is the first deep
model that transfers cross-domain knowledge for recommen-
dation with unstructured text in an end-to-end learning. Our
contributions are summarized as follows:

∙ The proposed MTNet exploits the text content and
transfers the source domain using an attention mecha-
nism which is trained in an end-to-end manner. It is
the first deep model that transfers cross-domain knowl-
edge for recommendation with unstructured text using
attention based neural networks.
∙ The memory component (MNet) can attentively exploit

the text content to match word semantics and user
preferences. It is among a few recent works on adopting
memory networks for hybrid recommendations.
∙ The transfer component (TNet) can selectively transfer

source items with the guidance of target user-item
interactions. It is a novel transfer network for cross-
domain recommendation.
∙ The proposed model can alleviate the sparsity issue in-

cluding cold-user and cold-item start, and outperforms
various baselines in terms of ranking metrics on two
real-world datasets.

The paper is organized as follows. We firstly introduce
the problem formulation in Section 2.1. Then we present
the memory component (MNet) to exploit the text content
in Section 2.2 and the transfer component (TNet) to trans-
fer cross-domain knowledge in Section 2.3 respectively. We
propose the neural model MTNet for cross-domain recom-
mendation with unstructured text in Section 2.4, followed
by its model learning (Section 2.5) and complexity analyses
(Section 2.6). In Section 3, we experimentally demonstrate
the superior performance of the proposed model over various
baselines (Sec. 3.2). We show the benefit of both transferred
knowledge and text content for the proposed model in Sec-
tion 3.3. We can reduce the amount of cold users and cold
items that are difficult to predict accurately (Section 3.4)
and hence alleviate the cold-start issues. We review related
works in Section 4 and conclude the paper in Section 5.

2 THE PROPOSED MTNET MODEL
We describe the proposed MTNet model in this section. MT-
Net models user preferences in the target domain by ex-
ploiting the text content and transferring knowledge from a
source/auxiliary domain. MTNet learns high-level represen-
tations for unstructured text and source domain items such
that the learned representations can estimate the conditional
probability of that whether a user will like an item. This is
done with a memory network (Sec. 2.2) and a novel transfer
network (Sec. 2.3), coupled by the shared embeddings on the
bottom and an interaction layer on the top (Sec. 2.4). The
entire network can be trained efficiently to minimize a binary
cross-entropy loss by back-propagation (Sec. 2.5). We begin
by describing the recommendation problem and the model
formulation before introducing the network architecture.

2.1 Problem and Model Formulation
We have a target domain (e.g., news domain) user-item inter-
action matrix 𝑅𝑇 ∈ R𝑚×𝑛𝑇 and a source domain (e.g., app
domain) matrix 𝑅𝑆 ∈ R𝑚×𝑛𝑆 where 𝑚 = |𝒰| and 𝑛𝑇 = |ℐ𝑇 |
(𝑛𝑆 = |ℐ𝑆 |) is the size of users 𝒰 and target items ℐ𝑇 (source
items ℐ𝑆). Note that the users are shared and hence we can
transfer knowledge across domains. We use 𝑢 to index users,
𝑖 to target items and 𝑗 to source items. The entry 𝑟𝑢𝑖 ∈ {0, 1}
is one if the user 𝑢 interacted with the item 𝑖 and zero oth-
erwise. Let [𝑗]𝑢 = (𝑗1, 𝑗2, ..., 𝑗𝑠) be the 𝑠-sized source items
that user 𝑢 has interacted with in the source domain.

The target domain also has the content information (e.g.,
product reviews). Denote by 𝑑𝑢𝑖 the content text corre-
sponding to user 𝑢 and item 𝑖. It is a sequence of words
𝑑𝑢𝑖 = (𝑤1, 𝑤2, ..., 𝑤𝑙) where each word 𝑤 comes from a vo-
cabulary 𝒱 and 𝑙 = |𝑑𝑢𝑖| is the length of the text document.

For the task of item recommendation, the goal is to gener-
ate a ranked list of items for each user based on her history
records, i.e., top-N recommendations. We hope improve the
recommendation performance in the target domain with the
help of both the content and source domain information.

Denote by the vector 𝑟𝑢 = (𝑟𝑢1, 𝑟𝑢2, ..., 𝑟𝑢𝑛𝑇) the interac-
tions of user 𝑢. The proposed MTNet models the probability
of his/her each observation conditioned on this user, the
content text, and the interacted source items:

𝑟𝑢𝑖 , 𝑝(𝑟𝑢𝑖 = 1|𝑢, 𝑑𝑢𝑖, [𝑗]𝑢). (1)

The equation sharpens the intuition behind the MTNet model,
that is, the conditional probability of whether user 𝑢 will
like the item 𝑖 can be determined by three factors: 1) his/her
individual preferences, 2) the corresponding content text
(𝑑𝑢𝑖), and 3) his/her behavior in a related source domain
([𝑗]𝑢). The likelihood function of the entire matrix R𝑇 is then
defined as:

𝑝(R𝑇) = Π𝑢Π𝑖𝑝(𝑟𝑢𝑖|𝑢, 𝑑𝑢𝑖, [𝑗]𝑢). (2)

The proposed MTNet is a neural network to learn the
conditional probability in an end-to-end manner (see Fig. 1):

𝑟𝑢𝑖 = 𝑓(𝑢, 𝑖, 𝑑𝑢𝑖, [𝑗]
𝑢|Θ𝑓), (3)

where 𝑓 is the network function and Θ𝑓 are model parameters.

MTNet: A Neural Approach for Cross-Domain Recommendation with Unstructured TextKDD’18 Deep Learning Day, August 2018, London, UK

Target itemUser
QP

Ƹ𝑟𝑢𝑖 𝑟𝑢𝑖Loss

𝒙𝑢𝑖

ReLU

𝒛𝑢𝑖

Source items

Softmax

iu

H
…

𝒙𝑢 𝒙𝑖

Shared layer

MNet

C

A
Softmax

𝒎𝑘

𝑝𝑘

𝒄𝑘

Sum
𝒐𝑢𝑖

𝑑𝑢𝑖

Dot prod.

TNet

𝑗1

𝒙𝑗1 𝒙𝑗s

𝑗𝑠

Dot prod.

α1 αs

H

ReLU

Doc

𝐖𝑜 𝐖𝑐𝐖𝑧

Lin.

map

Sum

𝒄𝑢𝑖

…

Figure 1: The Proposed MTNet Architecture. The
memory network (MNet) is to model unstructured
text. The transfer network (TNet) is to transfer
cross-domain knowledge. The middle part is to learn
the user-item interaction function. The shared layer
is to learn feature interactions from the outputs of
individual networks.

The model consists of a memory network o𝑢𝑖 = 𝑓𝑀 (𝑢, 𝑖, 𝑑𝑢𝑖|Θ𝑀)
to model unstructured text (Sec. 2.2) and a transfer net-
work c𝑢𝑖 = 𝑓𝑇 (𝑖, [𝑗]

𝑢|Θ𝑇) to transfer knowledge from the
source domain (Sec. 2.3). A shared feature interaction layer
𝑓𝑆(o𝑢𝑖, z𝑢𝑖, c𝑢𝑖|Θ𝑆) where z𝑢𝑖 is the non-linear representa-
tions of the (𝑢, 𝑖) interaction, is stacked on the top of the
learned high-level representations from individual networks.

2.2 MNet: Modeling Unstructured Text
We introduce the memory component, MNet, to exploit the
content information, i.e., unstructured text. MNet is a variant
of memory augmented neural network which can learn high-
level representations of unstructured text with respect to
the given user-item interaction. The attention mechanism
inherent in the memory component can determine which
words are highly relevant to the user preferences.

The MNet consists of one internal memory matrix A ∈
R𝐿×2𝑑 where 𝐿 is the vocabulary size (typically 𝐿 = 8000)
and 2𝑑 is the dimension of each memory slot, and one external
memory matrix C with the same dimensions as A. The
function of the two memory matrices works as follows.

Given a document 𝑑𝑢𝑖 = (𝑤1, 𝑤2, ..., 𝑤𝑙) corresponding to
the (𝑢, 𝑖) interaction, we form the memory slots 𝑚𝑘 ∈ R2𝑑

by mapping each word 𝑤𝑘 into an embedding vector with
matrix A, where 𝑘 = 1, ..., 𝑙 and the length of the longest
document is the memory size 𝑙𝑚𝑎𝑥. We form a preference
vector 𝑞 corresponding to the given document 𝑑𝑢𝑖 and the
user-item interaction (𝑢, 𝑖) where each element 𝑞𝑘 encodes

the relevance of user 𝑢 to these words given item 𝑖 as:

𝑞𝑘 = 𝑥𝑇
𝑢𝑚

(𝑢)
𝑘 + 𝑥𝑇

𝑖 𝑚
(𝑖)
𝑘 , (4)

where we split the 𝑚𝑘 = [𝑚
(𝑢)
𝑘 ,𝑚

(𝑖)
𝑘] into the user part

𝑚
(𝑢)
𝑘 and the item part 𝑚

(𝑖)
𝑘 . The 𝑥𝑢 and 𝑥𝑖 are the user

and item embeddings obtained by embedding matrices 𝑃 ∈
R𝑚×𝑑 and 𝑄 ∈ R𝑛𝑇×𝑑 respectively. On the right hand of the
above equation, the first term captures the matching between
preferences of user 𝑢 and word semantics, for example, the
user is a machine learning researcher and he/she may be more
interested in the words such as “optimization” and “Bayesian”
than those of “history” and “philosophy”. The second term
computes the support of item 𝑖 to the words, for example, the
item is a machine learning related article and it may support
more the words such as “optimization” and “Bayesian” than
those of “history” and “philosophy”. Together, the content-
based/associative addressing scheme can determine internal
memories with highly relevance to the target user 𝑢 regarding
the words 𝑑𝑢𝑖 given the specific item 𝑖.

Actually we can compact the above two terms with a single
vector dot product by concatenating the embeddings of the
user and the item into 𝑥𝑢𝑖 = [𝑥𝑢,𝑥𝑖]:

𝑞𝑘 = 𝑥𝑇
𝑢𝑖𝑚𝑘, 𝑘 = 1, 2, ..., 𝑙. (5)

The neural attention mechanism can adaptively learn the
weighting function over the words to focus on a subset of
them. Traditional combination of words predefines a heuristic
weighting function such as average or weights with tf-idf
scores. Instead, we compute the attentive weights over words
for a given user-item interaction to infer the importance of
each word’s unique contribution:

𝑝𝑘 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑞𝑘) =
exp(𝛽𝑞𝑘)∑︀𝑙

𝑘′=1 exp(𝛽𝑞𝑘′)
, (6)

which produces a probability distribution over the words
in 𝑑𝑢𝑖. The neural attention mechanism allows the memory
component to focus on specific words while to place little
importance on other words which may be less relevant. The
parameter 𝛽 is introduced to stabilize the numerical com-
putation when the exponentials of the softmax function are
very large and it also can amplify or attenuate the preci-
sion of the attention like a temperature [11] where a higher
temperature (i.e., a smaller 𝛽) produces a softer probability
distribution over words. We set 𝛽 = 𝑑−

1
2 by scaling along

with the dimensionality [29].
We construct the high-level representations by interpolat-

ing the external memories with the attentive weights as the
output of the MNet:

𝑜𝑢𝑖 =
∑︁

𝑘
𝑝𝑘𝑐𝑘, (7)

where the external memory slot 𝑐𝑘 ∈ R𝑑 is another embed-
ding vector for word 𝑤𝑘 by mapping it with matrix C. The
external memories allows the storage of long-term knowledge
pertaining specifically to each word’s role in matching the
user preference. In other words, the content-based addressing
scheme identifies important words in a document acting as
a key to retrieval the relevant values stored in the external

KDD’18 Deep Learning Day, August 2018, London, UK Guangneng Hu, Yu Zhang, and Qiang Yang

memory matrix 𝐶 via the neural attention mechanism. The
attention mechanism adaptively weights words according to
the specific user and item. The final output 𝑜𝑢𝑖 represents
a high-level, summarized information extracted attentively
from the text content involved with relations between the
user-item interaction (𝑢, 𝑖) and the corresponding words 𝑑𝑢𝑖.

2.3 TNet: Transferring Source Knowledge
We introduce the transfer component, TNet, to exploit the
source domain knowledge. TNet is a novel network which
can selectively transfer knowledge for cross-domain recom-
mendation. The central idea is to learn adaptive weights over
source domain items specific to the given target user-item
interaction during the knowledge transfer.

Given the source items [𝑗]𝑢 = (𝑗1, 𝑗2, ..., 𝑗𝑠) with which the
user 𝑢 has interacted in the source domain, TNet learns a
transfer vector 𝑐𝑢𝑖 ∈ R𝑑 to capture the relations between the
target item 𝑖 and source items given the user 𝑢. The underly-
ing observations can be illustrated in an example of improving
the movie recommendation by transferring knowledge from
the book domain. When we predict the preference of a user
on the movie “The Lord of the Rings,” the importance of her
read books such as “The Hobbit,” and “The Silmarillion” may
be much higher than those such as “Call Me by Your Name”.

The similarities between target item 𝑖 and source items
can be computed by their dot products:

𝑎
(𝑖)
𝑗 = 𝑥𝑇

𝑖 𝑥𝑗 , 𝑗 = 1, ..., 𝑠, (8)

where 𝑥𝑗 ∈ R𝑑 is the embedding for the source item 𝑗 by
an embedding matrix 𝐻 ∈ R𝑛𝑆×𝑑. This score computes the
compatibility between the target item and the source items
consumed by the user. For example, the similarity of target
movie 𝑖 = “The Lord of the Rings,” with the source book 𝑗 =
“The Hobbit” may be larger than that with the source book
𝑗′ = “Call Me by Your Name” (given a user 𝑢).

We normalize similarity scores to be a probability distri-
bution over source items:

𝛼𝑗 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑎
(𝑖)
𝑗), (9)

and then the transfer vector is a weighted sum of the corre-
sponding source item embeddings:

𝑐𝑢𝑖 = 𝑅𝑒𝐿𝑈(
∑︁

𝑗
𝛼𝑗𝑥𝑗), (10)

where we introduce non-linearity on the transfer vector by
activation function rectified linear unit (ReLU). Empirically
we found that the activation function 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥)
works well due to its non-saturating nature and suitability
for sparse data.

The transfer vector 𝑐𝑢𝑖 is a high-level representation, sum-
marizing the knowledge from the source domain as the output
of the TNet. TNet can selectively transfer representations
from the corresponding embeddings of source items with the
guidance of the target user-item interaction.
Remark I Memory networks are proposed to address the
task of question answering where the memories are a short
story text and the query/input is a question related to the
story for which the answer can be reasoned by the network.

Table 1: Model Parameters of MTNet.

Parameter Dimension Description
𝑃 𝑚× 𝑑 User embedding matrix
𝑄 𝑛𝑇 × 𝑑 Target item embedding matrix
𝐻 𝑛𝑆 × 𝑑 Source item embedding matrix
𝐴 𝐿× 2𝑑 Internal memory matrix
𝐶 𝐿× 2𝑑 External memory matrix

𝑊 , 𝑏 2𝑑× 𝑑, 𝑑 Linear mapping weight and bias
for the user-item interaction

𝑊𝑜,𝑊𝑧,𝑊𝑐 𝑑× 𝑑
Linear mapping for outputs

of individual networks
ℎ 3𝑑 Weight of the shared layer

We can think of the recommendation with unstructured text
as a question answering problem: the question to be addressed
is to ask how likely a user prefers an item where the text
content is analogue to the story text and the query is analogue
to the given user-item interaction.
Remark II The computational process of MNet and TNet is
similar. We firstly compute attentive weights over a collection
of objects (words in MNet and items in TNet). Then we
summarize the high-level representation as the output (the
text representation 𝑜𝑢𝑖 in MNet and the transfer vector 𝑐𝑢𝑖
in TNet), weighted by the attentive probabilities which are
computed by a content-based addressing scheme.

2.4 MTNet: The Proposed Neural Model
The architecture for the proposed MTNet model is illustrated
in Figure 1 as a multi-layer feedforward neural network. The
input layer specifies embeddings of a user 𝑢, a target item
𝑖, and the corresponding source items [𝑗]𝑢 = (𝑗1, ..., 𝑗𝑠). The
content text 𝑑𝑢𝑖 is modelled by the memories in the MNet to
produce a high-level representation 𝑜𝑢𝑖. The source items are
transferred into the transfer vector 𝑐𝑢𝑖 with the guidance of
(𝑢, 𝑖) in the TNet. These computational pathes are introduced
in the above Sec. 2.2 and Sec. 2.3 respectively.

We now propose the MTNet model. Firstly, we use a single
hidden layer network to learn a nonlinear representation for
the user-item interaction:

𝑧𝑢𝑖 = 𝑅𝑒𝐿𝑈(𝑊𝑥𝑢𝑖 + 𝑏), (11)

where 𝑊 and 𝑏 are the weight and bias parameters in the
hidden layer. Usually the dimension of 𝑧𝑢𝑖 is half of that 𝑥𝑢𝑖

in a typical tower-pattern architecture.
The outputs from the three individual networks can be

viewed high-level features of the content text, source domain
knowledge, and the user-item interaction. They come from
different feature space learned by different networks. Thus,
we use a shared layer on the top of the all features:

𝑟𝑢𝑖 =
1

1 + exp(−ℎ𝑇𝑦𝑢𝑖)
, (12)

where ℎ is the parameter. And the joint representation:

𝑦𝑢𝑖 = [𝑊𝑜𝑜𝑢𝑖,𝑊𝑧𝑧𝑢𝑖,𝑊𝑐𝑐𝑢𝑖], (13)

MTNet: A Neural Approach for Cross-Domain Recommendation with Unstructured TextKDD’18 Deep Learning Day, August 2018, London, UK

is concatenated from the linear mapped outputs of individual
networks where matrices 𝑊𝑜,𝑊𝑧,𝑊𝑐 are the corresponding
linear mapping transformations..

2.5 Model Learning
Due to the nature of the implicit feedback and the task of
item recommendation, the squared loss (𝑟𝑢𝑖 − 𝑟𝑢𝑖)

2 may be
not suitable since it is usually for rating prediction. Instead,
we adopt the binary cross-entropy loss:

ℒ = −
∑︁

(𝑢,𝑖)∈𝒮
𝑟𝑢𝑖 log 𝑟𝑢𝑖 + (1− 𝑟𝑢𝑖) log(1− 𝑟𝑢𝑖), (14)

where the training samples 𝒮 = 𝑅+
𝑇 ∪𝑅−

𝑇 are the union of
observed target interaction matrix and randomly sampled
negative pairs. Usually, |𝑅+

𝑇 | = |𝑅
−
𝑇 | and we do not perform

a predefined negative sampling in advance since this can only
generate a fixed training set of negative samples. Instead,
we generate negative samples during each epoch, enabling
diverse and augmented training sets of negative examples to
be used.

This objective function has a probabilistic interpretation
and is the negative logarithm likelihood of the following
likelihood function:

𝐿(Θ|𝒮) =
∏︁

(𝑢,𝑖)∈𝑅+
𝑇

𝑟𝑢𝑖
∏︁

(𝑢,𝑖)∈𝑅−
𝑇

(1− 𝑟𝑢𝑖), (15)

where the model parameters are:

Θ = {𝑃 ,𝑄,𝐻,𝐴,𝐶,𝑊 , 𝑏,𝑊𝑜,𝑊𝑧,𝑊𝑐,ℎ}. (16)

Comparing with Eq.(2), instead of modeling all zero entries
(i.e., the whole target matrix 𝑅𝑇), we learn from only a small
subset of such unobserved entries and treat them as negative
samples by picking them randomly during each optimization
iteration (i.e., the negative sampling technique).

The objective function can be optimized by stochastic
gradient descent (SGD) and its variants like adaptive moment
method (Adam) [15]. The update equations are:

Θ𝑛𝑒𝑤 ← Θ𝑜𝑙𝑑 − 𝜂
𝜕𝐿(Θ)

𝜕Θ
, (17)

where 𝜂 is the learning rate. Typical deep learning library
like TensorFlow (https://www.tensorflow.org) provides au-
tomatic differentiation and hence we omit the gradient e-
quations 𝜕𝐿(Θ)

𝜕Θ
which can be computed by chain rule in

back-propagation (BP).

2.6 Complexity Analysis
In the model parameters Θ, the embedding matrices 𝑃 , 𝑄
and 𝐻 contain a large number of parameters since they
depend on the input size of users and (target and source)
items, and their scale is hundreds of thousands. Typically,
the number of words, i.e., the vocabulary size is 𝐿 = 8000.
The dimension of embeddings is typically 𝑑 = 100. Since
the architecture follows a tower pattern, the dimension of
the outputs of the three individual networks is also limited
within hundreds. In total, the size of model parameters is
linear with the input size and is close to the size of typical
latent factors models [27] and one hidden layer neural CF
approaches [10].

Table 2: Datasets and Statistics.

Dataset Domain Statistics Amount

Mobile News

Shared #Users 15,890

Target

#News 84,802
#Reads 477,685
Density 0.035%
#Words 612,839

Avg. Words Per News 7.2

Source
#Apps 14,340

#Installations 817,120
Density 0.359%

Amazon Men

Shared #Users 8,514

Target

#Clothes (Men) 28,262
#Ratings/#Reviews 56,050

Density 0.023%
#Words 1,845,387

Avg. Words Per Review 32.9

Source
#Products (Sports) 41,317
#Ratings/#Reviews 81,924

Density 0.023%

During training, we compute the outputs of the three indi-
vidual networks in parallel using mini-batch stochastic opti-
mization which can be trained efficiently by back-propagation.
MTNet is scalable to the number of the training data. It can
easily update when new data examples come, just feeding
them into the training mini-batch. Thus, MTNet can handle
the scalability and dynamics of items and users like in an
online fashion. In contrast, the topic modeling related tech-
niques have difficulty in benefitting from these advantages to
this extent.

3 EXPERIMENTS
In this section, we conduct empirical study to answer the
following questions: 1) how does the proposed MTNet model
perform compared with state-of-the-art recommender sys-
tems; and 2) how do the text content and the source domain
information contribute to the proposed framework. We firstly
introduce the evaluation protocols and experimental settings,
and then we compare the performance of different recom-
mender systems. We further analyze the MTNet model to
understand the impact of the memory and transfer compo-
nent. We also investigate that the improved performance
comes from the cold-users and cold-items to some extent.

3.1 Experimental Settings
Dataset We evaluate on two real-world cross-domain dataset-
s. The first dataset, Mobile1, is provided by a large inter-
net company, i.e., Cheetah Mobile (http://www.cmcm.com/
en-us/). The information contains logs of user reading news,
the history of app installation, and some metadata such as
news publisher and user gender collected in one month in
the US. We removed users with fewer than 10 feedbacks. For
each item, we use the news title as its text content. We filter
stop words and use tf-idf to choose the top 8,000 distinct

1An anonymous version can be released later.

https://www.tensorflow.org
http://www.cmcm.com/en-us/
http://www.cmcm.com/en-us/

KDD’18 Deep Learning Day, August 2018, London, UK Guangneng Hu, Yu Zhang, and Qiang Yang

words as the vocabulary. This yields a corpus of 612K words.
The average number of words per news is less than 10. The
dataset we used contains 477K user-news reading records
and 817K user-app installations. There are 15.8K shared
users which enable the knowledge transfer between the two
domains. We aim to improve the news recommendation by
transferring knowledge from app domain. The data sparsity
is over 99.6%.

The second dataset is a public Amazon dataset (http://
snap.stanford.edu/data/web-Amazon.html), which has been
widely used to evaluate the performance of collaborative
filtering approaches [9]. We use the two categories of Amazon
Men and Amazon Sports as the cross-domain. The original
ratings are from 1 to 5 where five stars indicate that the user
shows a positive preference on the item while the one stars are
not. We convert the ratings of 4-5 as positive samples. The
dataset we used contains 56K positive ratings on Amazon
Men and 81K positive ratings on Amazon Sports. There are
8.5K shared users, 28K Men products, and 41K Sports goods.
We aim to improve the recommendation on the Men domain
by transferring knowledge from relevant Sports domain. The
data sparsity is over 99.7%. We filter stop words and use
tf-idf to choose the top 8,000 distinct words as the vocabulary.
The average number of words per review is 32.9.

The statistics of the two datasets are summarized in Ta-
ble 2. As we can see, both datasets are very sparse and hence
we hope improve performance by transferring knowledge from
the auxiliary domain and exploiting the text content as well.
Note that Amazon dataset are long text of product reviews
(the number of average words per item is 32), while Cheetah
Mobile is short text of news titles (the number of average
words per item is 7).
Evaluation Protocol For item recommendation task, the
leave-one-out (LOO) evaluation is widely used and we follow
the protocol in [10]. That is, we reserve one interaction as the
test item for each user. We determine hyper-parameters by
randomly sampling another interaction per user as the valida-
tion/development set. We follow the common strategy which
randomly samples 99 (negative) items that are not interacted
by the user and then evaluate how well the recommender can
rank the test item against these negative ones.

Since we aim at top-K item recommendation, the typical
evaluation metrics are hit ratio (HR), normalized discounted
cumulative gain (NDCG), and mean reciprocal rank (MRR),
where the ranked list is cut off at 𝑡𝑜𝑝𝐾 = {5, 10, 20}. HR
intuitively measures whether the reserved test item is present
on the top-K list, defined as:

𝐻𝑅 =
1

|𝒰|
∑︁

𝑢∈𝒰
𝛿(𝑝𝑢 ≤ 𝑡𝑜𝑝𝐾), (18)

where 𝑝𝑢 is the hit position for the test item of user 𝑢, and
𝛿(·) is the indicator function. NDCG and MRR also account
for the rank of the hit position, respectively defined as:

𝑁𝐷𝐶𝐺 =
1

|𝒰|
∑︁

𝑢∈𝒰

log 2

log(𝑝𝑢 + 1)
, (19)

𝑀𝑅𝑅 =
1

|𝒰|
∑︁

𝑢∈𝒰

1

𝑝𝑢
. (20)

A higher value with lower cutoff indicates better performance.
Baselines We compare with various baselines, categorized
as single/cross domain, shallow/deep, and hybrid methods.

Baselines Shallow method Deep method
Single-Domain BPRMF MLP
Cross-Domain CDCF, CMF MLP++, CSN

Hybrid HFT, TextBPR LCMR
Cross + Hybrid CDCF++ MTNet (ours)

∙ BPRMF, Bayesian personalized ranking [26], is a la-
tent factor model based on matrix factorization and
pair-wise loss. It learns on the target domain only.
∙ CDCF, Cross-Domain CF with factorization machines

(FM) [18], is a cross-domain recommender which ex-
tends FM [25]. It is a context-aware approach which
applies factorization on the merged domains (aligned
by the shared users). That is, the auxiliary domain is
used as context. On the Mobile dataset, the context for
a user in the target news domain is his/her history of
app installations in the source app domain. The feature
vector for the input is a sparse vector 𝑥 ∈ R𝑚+𝑛𝑇+𝑛𝑆

where the non-zero entries are as follows: 1) the index
for user id, 2) the index for target news id (target do-
main), and all indices for his/her installed apps (source
domain).
∙ CDCF++: We extend the above CDCF model to

exploit the text content. The feature vector for the
input is a sparse vector 𝑥 ∈ R𝑚+𝑛𝑇+𝑛𝑆+𝐿 where the
non-zero entries are augmented by the word features
corresponding to the given user-item interaction. In
this way, CDCF++ can learn from both the source
domain and unstructured text information.
∙ CMF, Collective matrix factorization [27], is a multi-

relation learning approach which jointly factorizes ma-
trices of individual domains. Here, the relation is the
user-item interaction. On Mobile, the two matrices are
𝐴 = “user by news” and 𝐵 = “user by app” respectively.
The shared user factors 𝑃 enable knowledge transfer
between two domains. Then CMF factorizes matrices
𝐴 and 𝐵 simultaneously by sharing the user latent
factors: 𝐴 ≈ 𝑃 𝑇𝑄𝐴 and 𝐵 ≈ 𝑃 𝑇𝑄𝐵 . It is a shallow
model and jointly learns on two domains. This can
be thought of a non-deep transfer/multitask learning
approach for cross-domain recommendation.
∙ HFT, Hidden Factors and hidden Topics [20], adopts

topic distributions to learn latent factors from text
reviews. It is a hybrid method.
∙ TextBPR extends the basic BPRMF model by inte-

grating text content. It computes the prediction scores
by two parts: one is the standard latent factors, same
with the BPRMF; and the other is the text factors
learned from the text content. It has two implementa-
tions, the VBPR model [9] and the TBPR model [12]
which are the same in essence.
∙ MLP, multilayer perceptron [10], is a neural CF ap-

proach which learns the nonlinear interaction function

http://snap.stanford.edu/data/web-Amazon.html
http://snap.stanford.edu/data/web-Amazon.html

MTNet: A Neural Approach for Cross-Domain Recommendation with Unstructured TextKDD’18 Deep Learning Day, August 2018, London, UK

Table 3: Comparison Results of Different Methods on the Mobile Dataset. The best baselines are marked with
asterisks and the best results are boldfaced.

Method 𝑡𝑜𝑝𝐾 = 5 𝑡𝑜𝑝𝐾 = 10 𝑡𝑜𝑝𝐾 = 20
HR NDCG MRR HR NDCG MRR HR NDCG MRR

BPRMF .4380 .3971 .3606 .4941 .4182 .3694 .5398 .4316 .3730
CDCF .5066 .3734 .3293 .5325 .4089 .3441 .5452 .4374 .3519
CMF .4789 .3535 .3119 .5846 .3879 .3263 .6662 .4086 .3320
HFT .4966 .3617 .3175 .5580 .4093 .3365 .6547 .4379 .3445

TextBPR .4948 .4298 .3826 .5466 .4499 .3913 .6123 .4682 .3958
CDCF++ .4981 .3693 .3267 .6055 .4041 .3411 .6244 .4335 .3491

MLP .5380 .4121 .3702 .6176 .4381 .3810 .6793 .4529 .3851
MLP++ .5524 .4284 .3871 .6319 .4535 .3976 .6910 .4691 .4019

CSN .5551* .4323* .3920* .6327* .4574* .4025* .6908 .4732* .4068*
LCMR .5476 .4189 .3762 .6311 .4460 .3874 .6927* .4619 .3918
MTNet .5664 .4427 .4018 .6438 .4680 .4124 .6983 .4820 .4163

Improvement of MTNet 2.04% 2.42% 2.51% 1.75% 2.32% 2.47% 0.81% 1.86% 2.34%

using neural networks. It is a deep model learning on
the target domain only.
∙ MLP++: We combine two MLPs by sharing the user

embedding matrix, enabling the knowledge transfer
between two domains through the shared users. It is
a naive knowledge transfer approach applied for cross-
domain recommendation.
∙ CSN, Cross-stitch network [21], is a deep multitask

learning model originally proposed for visual recogni-
tion tasks. We use the cross-stitch units to stitch two
MLP networks. It learns a linear combination of activa-
tion maps from two networks and hence benefits from
each other. Comparing with MLP++, CSN enables
knowledge transfer also in the hidden layers besides
the lower embedding matrices. This is a deep transfer
learning approach for cross-domain recommendation.
∙ LCMR, Local and Centralized Memory Recommender [14],

is a deep model for collaborative filtering with unstruc-
tured Text. The local memory module is similar to our
MNet except that we only have one layer. This is a
deep hybrid method.

Implementation For BPRMF, we use LightFM’s imple-
mentation2 which is a popular CF library. For CDCF and
CDCF++, we adapt the official libFM implementation3. For
CMF, we use a Python version reference to the original
Matlab code4. For HFT and TextBPR, we use the code
released by their authors5. The word embeddings used in
the TextBPR are pre-trained by GloVe6. For latent factor
models, we vary the number of factors from 10 to 100 with
step size 10. For MLP, we use the code released by its au-
thors7. The MLP++ and CSN are implemented based on
MLP. The LCMR model is similar to our MNet model and

2https://github.com/lyst/lightfm
3http://www.libfm.org
4http://www.cs.cmu.edu/~ajit/cmf/
5http://cseweb.ucsd.edu/~jmcauley/
6https://nlp.stanford.edu/projects/glove/
7https://github.com/hexiangnan/neural_collaborative_filtering

thus implemented in company. Our methods are implemented
using TensorFlow. Parameters are randomly initialized from
Gaussian 𝒩 (0, 0.012). The optimizer is Adam with initial
learning rate 0.001. The size of mini batch is 128. The ratio
of negative sampling is 1. The MLP and MLP++ follows
a tower pattern, halving the layer size for each successive
higher layer. Specifically, the configuration of hidden layers
in the base MLP network is [64 → 32 → 16 → 8] as refer-
ence in the original paper [10]. For CSN, it requires that the
number of neurons in each hidden layer is the same and the
configuration is [64] * 4 (equals [64 → 64 → 64 → 64]). We
investigate several typical configurations {16, 32, 64, 80} * 4 .
The dimension of embeddings is 𝑑 = 75.

3.2 Comparison Results
In this section, we report the recommendation performance of
different methods and discuss the findings. The comparison
results are shown in Table 3 and Table 4 respectively on
the Mobile and Amazon datasets where the last row is the
relative improvement of ours vs the best baseline. We have
the following observations.

Firstly, we can see that our proposed neural models are
better than all baselines on the two datasets at each setting,
including the base MLP network, shallow cross-domain mod-
els (CMF and CDCF), deep cross-domain models (MLP++
and CSN), and hybrid methods (HFT and TextBPR, LCMR).
These results demonstrate the effectiveness of the proposed
neural model.

On the Mobile dataset, the differences between MTNet
and other methods are more pronounced for small numbers
of recommended items including top-5 or top-10 where we
achieve average 2.25% relative improvements over the best
baseline. This is a desirable feature since we often recommend
only a small number of top ranked items to consumers to
alleviate the information overload issue.

Note that the relative improvement of the proposed model
vs. the best baseline is more significant on the Amazon dataset

https://github.com/lyst/lightfm
http://www.libfm.org
http://www.cs.cmu.edu/~ajit/cmf/
http://cseweb.ucsd.edu/~jmcauley/
https://nlp.stanford.edu/projects/glove/
https://github.com/hexiangnan/neural_collaborative_filtering

KDD’18 Deep Learning Day, August 2018, London, UK Guangneng Hu, Yu Zhang, and Qiang Yang

Table 4: Comparison Results of Different Methods on the Amazon Dataset. The best baselines are marked
with asterisks and the best results are boldfaced.

Method 𝑡𝑜𝑝𝐾 = 5 𝑡𝑜𝑝𝐾 = 10 𝑡𝑜𝑝𝐾 = 20
HR NDCG MRR HR NDCG MRR HR NDCG MRR

BPRMF .0810 .0583 .0509 .1204 .0710 .0561 .1821 .0864 .0602
CDCF .1295 .0920 .0797 .2070 .1167 .0897 .3841 .1609 .1015
CMF .1498 .0950 .0771 .2224 .1182 .0863 .3573 .1521 .0957
HFT .1077 .0815 .0729 .1360 .0907 .0767 .2782 .1252 .0854

TextBPR .1517 .1208 .1104 .1777 .1291 .1138 .2268 .1414 .1171
CDCF++ .1314 .0926 .0800 .2102 .1177 .0901 .3822 .1605 .1016

MLP .2100 .1486 .1283 .2836 .1697 .1371 .3820 .1899 .1426
MLP++ .2263 .1626 .1417 .2992 .1862 .1514 .3810 .2069 .1570

CSN .2340* .1680* .1462* .3018* .1898* .1552* .3944* .2091* .1605*
LCMR .2024 .1451 .1263 .2836 .1678 .1356 .3951 .1918 .1420
MTNet .2575 .1796 .1550 .3490 .2077 .1666 .4443 .2311 .1727

Improvement of MTNet 10.04% 6.90% 6.01% 15.63% 9.43% 7.34% 12.65% 10.52% 7.60%

than that on the Mobile dataset, obtaining average 9.56%
relative improvements over the best CSN baseline, though
the Amazon is sparser than the Mobile (see Table 2). One
explanation is that the relatedness of the Men and Sports do-
mains is closer than that between the news and app domains.
This will benefit all cross-domain methods including CMF,
CDCF, MLP++, and CSN, since they exploit information
from both two domains. Another explanation is that the text
content contains richer information on the Amazon dataset.
As it is shown in Table 2, the average words in the product
reviews are longer that in the news titles. This will benefit
all hybrid methods including HFT, TextBPR, and LCMR.

The hybrid TextBPR model composes a document repre-
sentation by averaging the words’s embeddings. This can not
distinguish the important words to match the user prefer-
ences. This may explain that it has difficulty in improving the
recommendation performance when integrating text content.
For example, it can not consistently outperform the pure CF
method, MLP. The cross-domain CSN model transfers every
representations from the source network with the same coeffi-
cient. This may have a risk in transferring the noise and harm
the performance, as pointed out in its sparse variant [13].
On the Amazon dataset, it loses to the proposed model by a
large margin (though MTNet leverages content information).
In contrast, the memory and transfer components are both
selective to extract useful information based on the attention
mechanism. This may explain that our model is consistently
the best at all settings.

There is a possibility that the noise from auxiliary domain
and some irrelevance information contained in the unstruc-
tured text propose a challenge for exploiting them. This
shows that the proposed model is more effective since it can
select useful representations from the source network and at-
tentively focus on the important words to match preferences
of users.

In summary, the empirical comparison results demonstrate
the superiority of the proposed neural model to exploit the

HR NDCG MRR
0.35

0.4

0.45

0.5

0.55

0.6

P
e

rf
o

rm
a

n
c
e

@
5

MTNet\M\T
MTNet\M
MTNet\T
MTNet

HR NDCG MRR
0.35

0.4

0.45

0.5

0.55

0.6

0.65

P
e

rf
o

rm
a

n
c
e

@
1

0

MTNet\M\T
MTNet\M
MTNet\T
MTNet

HR NDCG MRR
0.1

0.15

0.2

0.25

0.3

P
e

rf
o

rm
a

n
c
e

@
5

MTNet\M\T
MTNet\M
MTNet\T
MTNet

HR NDCG MRR
0.1

0.15

0.2

0.25

0.3

0.35

P
e

rf
o

rm
a

n
c
e

@
1

0

MTNet\M\T
MTNet\M
MTNet\T
MTNet

Figure 2: Contributions from Unstructured Text (M-
Net) and Cross-Domain Knowledge (TNet) on the
Mobile (Top) and Amazon (Bottom) Datasets.

text content and source domain knowledge for recommenda-
tion.

3.3 Impact of Unstructured Text and
Auxiliary Domain

We have shown the effectiveness of the two memory and
transfer components together in the proposed framework.
We now investigate the contribution of each network to the
MTNet by eliminating the impact of text content and source
domain from it in turn:

∙ MTNet∖M∖T: Eliminating the impact of both con-
tent and source information from MTNet. This is a

MTNet: A Neural Approach for Cross-Domain Recommendation with Unstructured TextKDD’18 Deep Learning Day, August 2018, London, UK

0 50 100 150 200
Num of Training Examples

0

50

100

150

200

250

300

350

N
u

m
 o

f
M

is
se

d
 U

se
rs

MTNet
MLP

0 10 20 30 40
Num of Training Examples

0

200

400

600

800

1000

1200

1400

N
u
m

 o
f

M
is

se
d

 U
se

rs

MTNet
MLP

Figure 3: The Missed Hit Users Distribution (not
normalized) Over the Number of Training Examples
on the Mobile (Left) and Amazon (Right) Datasets.

collaborative filtering recommender. Actually, it is e-
quivalent to a single hidden layer MLP model.
∙ MTNet∖M: Eliminating the impact of content in-

formation (MNet) from MTNet. This is a novel cross-
domain recommender which can adaptively select source
items to transfer.
∙ MTNet∖T: Eliminating the impact of source infor-

mation (TNet) from MTNet. This is a novel hybrid
filtering recommender which can attentively select con-
tent words to exploit.

The ablation analyses of MTNet and its components are
shown in Figure 2. The performance degrades when either
memory or transfer modules are eliminated. This is under-
standable since we lose some information. In other words,
the two components can extract useful knowledge to improve
the recommendation performance. For example, MTNet∖T
and MTNet∖M respectively reduce 1.1% and 4.3% relative
NDCG@10 performance by comparing with MTNet on the
Mobile dataset (they are 8.5% and 16.1% on Amazon), sug-
gesting that both memory and transfer networks learn essen-
tial knowledge for recommendation. On the evaluated two
datasets, removing the memory component degrades perfor-
mance worse than that of removing the transfer component.
This may be due to that the text content contains richer
information or the source domain contains much more noise
or both.

3.4 Improvement on Cold Users and Items
The cold-user and cold-item problems are common issues in
recommender systems. When new users enter into a system,
they have no history that can be exploited by the recom-
mender system to learn their preferences, leading to the
cold-user start problem. Similarly, when latest news are re-
leased on the Google News, there are no reading records that
can be exploited by the recommender system to learn users’
preferences on them, leading to the cold-item start problem.
In general, it is very hard to train a reliable recommender
system and make predictions for users and items that have
few interactions.

Intuitively, the proposed model can alleviate both the cold-
user and cold-item start issues. MTNet alleviates the cold-
user start issue in the target domain by transferring his/her

history from the related source domain. MTNet alleviates
the cold-item start issue by exploiting the associated text
content to reveal its properties, semantics, and topics. We now
investigate that MTNet indeed improves the performance
over the cold users and items by comparing with the pure
neural collaborative filtering method, MLP.

We analyse the distribution of missed hit users (MHUs)
of MTNet and MLP (at cutoff 10). We expect that the cold
users in MHUs of MLP can be reduced by using the MTNet
model. The more amount we can reduce, the more effective
that MTNet can alleviate the cold-user start issues.

The results are shown in Figure 3 where the number of
training examples can measure the “coldness” of a user. Nat-
urally, the MHUs are most of the cold users who have few
training examples. As we can see, the number of cold users in
MHUs of MLP is higher than that of MTNet. If the cold users
are defined as those with less than seven training examples,
then MTNet reduces the number of cold users from 4,218
to 3,746 on the Amazon dataset, achieving relative 12.1%
reduction. On the Mobile dataset, if the cold users are those
with less than ten training examples (Mobile is denser than
Amazon), then MTNet reduces the number of cold users from
1,385 to 1,145 on the Mobile dataset, achieving relative 20.9%
reduction. These results show that the proposed model is
effective in alleviating the cold-user start issue. The results
on cold items are similar and we omit them due to the page
limit.

4 RELATED WORKS
Recommender systems aim at learning user preferences on
unknown items from their past history. Content-based recom-
mendations are based on the matching between user profiles
and item descriptions. It is difficult to build the profile for
each user when there is no/few content. Collaborative filter-
ing (CF) alleviates this issue by predicting user preferences
based on the user-item interaction behavior, agnostic to the
content [5]. Latent factor models learn feature vectors for
users and items mainly based on MF [16] which has proba-
bilistic interpretations [22]. FM can mimic MF [25]. Neural
networks are proposed to push the learning of feature vec-
tors towards non-linear representations, including the NNMF
and MLP [6, 10]. The basic MLP architecture is extended
to regularize the factors of users and items by social and
geographical information [33]. Other neural approaches learn
from the explicit feedback for rating prediction task [4, 36].
We focus on learning from the implicit feedback for top-N
recommendation [32]. CF models, however, suffer from the
data sparsity issue.

Items are usually associated with the content information
such as unstructured text (e.g., abstracts of articles and re-
views of products). CF approaches can be extended to exploit
the content information [1, 30, 31] and user reviews [9, 12, 20].
Memory networks can reason with an external memory [28].
Due to the capability of naturally learning word embeddings
to address the problems of word sparseness and semantic gap,
a memory module can be used to model item content [14] or

KDD’18 Deep Learning Day, August 2018, London, UK Guangneng Hu, Yu Zhang, and Qiang Yang

the neighborhood of users [7]. We follow this research thread
by using neural networks to attentively extract important
information from the text content.

Cross-domain recommendation [2] is an effective technique
to alleviate sparse issue. A class of methods are based on
MF applied to each domain, including CMF [27] with its
heterogeneous [24] variants, and codebook transfer [17]. Het-
erogeneous cross-domain [34], multiple source domains [19],
and multi-view learning [8] are also proposed. Transfer learn-
ing (TL) aims at improving the performance of the target
domain by exploiting knowledge from source domains [23].
Similar to TL, the multitask learning (MTL) is to leverage
useful knowledge in multiple related tasks to help each oth-
er [3, 35]. The cross-stitch network [21] enables information
sharing between the two base networks. We follow this re-
search thread by using neural networks to selectively transfer
knowledge from the source items.

5 CONCLUSION
It is shown that the text content and the source domain
knowledge can help improve recommendation performance
and can be integrated under a neural architecture. The sparse
target user-item interaction matrix can be reconstructed with
the knowledge guidance from both of the two kinds of in-
formation, alleviating the data sparse issue. We proposed
a novel deep neural model, MTNet, for cross-domain rec-
ommendation with unstructured text. MTNet consists of a
memory component which can attentively focus important
words to match user preferences and a transfer component
which can selectively transfer useful source items to benefit
the target domain. MTNet shows better performance than
various baselines on two real-world datasets under differen-
t settings. Additionally, we conducted ablation analyses to
understand contributions from the two memory and transfer
components. We quantify the amount of missed hit cold users
(and items) that MTNet can reduce by comparing with the
pure CF method, showing that MTNet is able to alleviate
the cold-start issue.

REFERENCES
[1] T. Bansal, D. Belanger, and A. McCallum. 2016. Ask the gru:

Multi-task learning for deep text recommendations. In ACM
RecSys.

[2] I. Cantador, I. Fernández-Tobías, S. Berkovsky, and P. Cremonesi.
2015. Cross-domain recommender systems. In Recommender
Systems Handbook.

[3] R. Caruana. 1997. Multitask Learning. Machine Learning (1997).
[4] R. Catherine and W. Cohen. 2017. TransNets: Learning to Trans-

form for Recommendation. In ACM RecSys.
[5] M. Deshpande and G. Karypis. 2004. Item-based top-n recommen-

dation algorithms. ACM Transactions on Information Systems.
[6] G. Dziugaite and D. Roy. 2015. Neural network matrix factoriza-

tion. arXiv:1511.06443 .
[7] T. Ebesu, B. Shen, and Y. Fang. 2018. Collaborative Memory

Network for Recommendation Systems. In ACM SIGIR.
[8] A. Elkahky, Y. Song, and X. He. 2015. A multi-view deep learning

approach for cross domain user modeling in recommendation
systems. In WWW.

[9] R. He and J. McAuley. 2016. VBPR: visual Bayesian Personalized
Ranking from implicit feedback. In AAAI.

[10] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. 2017.
Neural collaborative filtering. In WWW.

[11] G. Hinton, O. Vinyals, and J. Dean. 2015. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531 (2015).

[12] G. Hu and X. Dai. 2017. Integrating reviews into personalized
ranking for cold start recommendation. In Pacific-Asia Knowl-
edge Discovery and Data Mining.

[13] G. Hu, Y. Zhang, and Q. Yang. 2018. CoNet: Collaborative Cross
Networks for Cross-Domain Recommendation. arXiv preprint
arXiv:1804.06769 (2018).

[14] G. Hu, Y. Zhang, and Q. Yang. 2018. LCMR: Local and Central-
ized Memories for Collaborative Filtering with unstructured Text.
arXiv preprint arXiv:1804.06201 (2018).

[15] D. Kingma and J. Ba. 2015. Adam: A method for stochastic
optimization. ICLR.

[16] Y. Koren, R. Bell, and C. Volinsky. 2009. Matrix factorization
techniques for recommender systems. Computer (2009).

[17] B. Li, Q. Yang, and X. Xue. 2009. Can movies and books collab-
orate?: cross-domain collaborative filtering for sparsity reduction.
In IJCAI.

[18] B. Loni, Y. Shi, M. Larson, and A. Hanjalic. 2014. Cross-Domain
Collaborative Filtering with Factorization Machines. In European
conference on information retrieval.

[19] Z. Lu, E. Zhong, L. Zhao, E. Xiang, W. Pan, and Q. Yang. 2013.
Selective transfer learning for cross domain recommendation. In
SIAM International Conference on Data Mining.

[20] J. McAuley and J. Leskovec. 2013. Hidden factors and hidden
topics: understanding rating dimensions with review text. In ACM
RecSys.

[21] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert. 2016. Cross-
stitch networks for multi-task learning. In IEEE CVPR.

[22] A. Mnih and R. Salakhutdinov. 2008. Probabilistic matrix factor-
ization. In NIPS.

[23] S. Pan and Q. Yang. 2010. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering (2010).

[24] W. Pan, N. Liu, E. Xiang, and Q. Yang. 2011. Transfer learning
to predict missing ratings via heterogeneous user feedbacks. In
IJCAI.

[25] S. Rendle. 2012. Factorization machines with libfm. ACM Trans-
actions on Intelligent Systems and Technology (2012).

[26] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback.
In UAI.

[27] A. Singh and G. Gordon. 2008. Relational learning via collective
matrix factorization. In ACM SIGKDD.

[28] S. Sukhbaatar, J. Weston, and R. Fergus. 2015. End-to-end
memory networks. In NIPS.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.
Gomez, Ł. Kaiser, and I. Polosukhin. 2017. Attention is all you
need. In NIPS.

[30] C. Wang and D. Blei. 2011. Collaborative topic modeling for
recommending scientific articles. In ACM SIGKDD.

[31] H. Wang, N. Wang, and D. Yeung. 2015. Collaborative deep
learning for recommender systems. In ACM SIGKDD.

[32] Y. Wu, C. DuBois, A. Zheng, and M. Ester. 2016. Collaborative
denoising auto-encoders for top-n recommender systems. In ACM
WSDM.

[33] C. Yang, L. Bai, C. Zhang, Q. Yuan, and J. Han. 2017. Bridging
Collaborative Filtering and Semi-Supervised Learning: A Neural
Approach for POI Recommendation. In ACM SIGKDD.

[34] D. Yang, J. He, H. Qin, Y. Xiao, and W. Wang. 2015. A graph-
based recommendation across heterogeneous domains. In ACM
CIKM.

[35] Y. Zhang and Q. Yang. 2017. A survey on multi-task learning.
arXiv:1707.08114 .

[36] L. Zheng, V. Noroozi, and P. Yu. 2017. Joint deep modeling
of users and items using reviews for recommendation. In ACM
WSDM.

	Abstract
	1 Introduction
	2 The Proposed MTNet Model
	2.1 Problem and Model Formulation
	2.2 MNet: Modeling Unstructured Text
	2.3 TNet: Transferring Source Knowledge
	2.4 MTNet: The Proposed Neural Model
	2.5 Model Learning
	2.6 Complexity Analysis

	3 Experiments
	3.1 Experimental Settings
	3.2 Comparison Results
	3.3 Impact of Unstructured Text and Auxiliary Domain
	3.4 Improvement on Cold Users and Items

	4 Related Works
	5 Conclusion
	References

