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ABSTRACT
Current state-of-the-art document classification methods based on
attention mechanisms on document structures have been shown
to perform well due to their ability to attend differentially to more
and less important parts of the document when constructing the
representation. While these models perform well on flat classifica-
tion tasks, to our knowledge not much research has been done on
hierarchical classification tasks.

In this paper, we propose a few variations of the Hierarchical
Attention Network (HAN) that directly incorporate the pre-defined
hierarchical structure of the output label space into the network
structure, via the use of hierarchical output layers representing
different levels of the output label’s hierarchy. We present an eval-
uation of this model using the task of classifying Shopify app de-
scriptions to a hierarchically-structured app category labels, and
we demonstrate that by incorporating hierarchical structure of the
labels into the design of the network, the model was able to outper-
form the baseline by a substantial margin. Additionally, we compare
the classification performance of all the proposed variations.
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1 INTRODUCTION
Many different domains contain hierarchy of information that can
be stored, in a data structure sense, as hierarchies (or taxonomies,
another term we will use interchangeably), which are a good way
to help organize vast amounts of information. In e-commerce, the
use of taxonomies to organize information are ubiquitous. One
application is surrounding the task of classifying products to one or
more product categories, represented as a taxonomy of product cat-
egories [2], which is fundamental to effectively search and organize
the product listings in catalogs. Large e-commerce companies like
Amazon, e-Bay, Pinterest, and Etsy list millions of products on their
websites. Aside from classifying products into categories, another
important application in e-commerce is the task of classifying apps
to one or more app categories, also represented as taxonomies of
app categories, for example see the Google Play Store [1] and the
Shopify App Store [3]. This is fundamental for powering search
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capabilities for app users, so that they could find the apps they need
based on certain functionality. App categories can also be used to
help with downstream tasks, like app recommendation [6]. These
tasks are instances of the hierarchical classification task. There
are many different types of hierarchical classification tasks. In this
paper, we focus on the task where the labels are tree-structured,
pre-defined, and considered by the model all at once (as opposed to
locally). For more details on these criteria, and different types of
hierarchical classification tasks, see [15].

In the above tasks, hierarchy of information also exists within
each document related to objects to be classified. Here, we use the
term document to describe the textual metadata from items being
classified into the categories, for example, product characteristics
and descriptions of app functionalities. This hierarchy of informa-
tion exist across various structural levels of granularity, such as
chapters, sections, paragraphs, sentences, and words. This can be
used by domain knowledge experts to understand the document in
order to perform the above classification tasks. However, manual
human classification is still a time-consuming and difficult task due
to the number of documents, large size of taxonomy, noisy meta-
data, niche categories, continuously growing corpus and frequent
document updates [7] [5] [8].

Document classification has long been a fundamental task in
Natural Language Processing and also finds application in many
industrial settings. Amidst all the various paradigms to solve docu-
ment classification, machine learning techniques have found suc-
cess due to their scalability (compared to manual classification)
and adaptability (compared to automated rule-based approaches).
In traditional machine learning approaches, documents are repre-
sented with sparse features like n-grams and classified using kernel
methods [16] [9]. More recent approaches use neural-networks and
have been shown to be quite effective [11] [12] [10]. In [17], it was
shown that leveraging the hierarchical structure of the document
by including two levels of attention mechanisms [4] at the word
and sentence levels allows the model to pay more or less attention
to individual words and sentences during representation learning.
The differential utility of using attention mechanisms to model
hierarchy inspired our work, as we build upon this work specifi-
cally to solve document classification tasks where the labels are
hierarchical-structured.

2 THE PROPOSED ARCHITECTURE:
HIERARCHICAL ATTENTION NETWORK
WITH HIERARCHICAL OUTPUTS

Our architecture is largely based on the HAN model [17], which
hierarchically model the structure of a document. However, it is
different in following two ways:
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Figure 1: Hierarchical Attention Network with Hierarchical
Outputs

• Our architecture has hierarchical output layers representing
hierarchical taxonomy labels. Pre-defined tree structure of
the taxonomy labels explicitly induces part of the network.
• Our architecture removes the one-layer Multilayer Percep-
tron (MLP) in the attention-building part of the networks.
The attention weights are directly calculated as the similarity
of context vector and the output hidden state vectors of the
GRU.

The overall architecture of Hierarchical Attention Network with
Hierarchical Outputs is shown in Figure 1.

Similar to in [17], we use a bidirectional GRU [4] to encode a
sequence at both sentence level and word level. Given a document
d with L sentences (s1, s2, ..., sL), each sentence si is a sequence of
words (wi1,wi2, ...,wiTi ). The document representation is obtained
through two levels of sequence encoding, word and sentence.

In word sequence encoding, the outputs of the GRU network on
sentence si are:

hit =
−→
hit ⊕

←−
hit ,

where ⊕ is vector concatenation operation, and
−→
hit and

←−
hit are

forward and backward hidden states at the t th word, respectively.
In sentence sequence encoding, the outputs of the GRU network

on a document d are:
hi =

−→
hi ⊕

←−
hi

Where
−→
hi and

←−
hi are forward and backward hidden states at the ith

sentence respectively.
In RNNs with attention, the sequence representation is learned

as a weighted average over the all the hidden states. The weight
values are determined by the association between the hidden states
and the context vector. To wit, the weight for the t th (t ∈ [1,Ti ])
hidden state in sentence si is:

αit =
exp (hituw )∑
t exp (hituw )

, (1)

and the representation for the sequence si is:

si =
∑
t
αithit . (2)

The weight for the ith (i ∈ [1,L]) hidden state in document d is:

αi =
exp (hius )∑
i exp (hius )

, (3)

and the representation for the document d is:

v =
∑
i
αihi (4)

In our architecture, the attention weights are defined by the
softmax of the dot products between context vector and the hidden
state vectors, instead of projecting the hidden state vectors to a
new feature space as in [17]. In our application domain and with
hierarchical outputs, the experimental results demonstrate that the
simplified architecture is more performant.

Our architecture has multiple output layers corresponding to
different levels of taxonomy labels. The document representation
vector is fully connected with the first output layer, which repre-
sents the bottom taxonomy level (levelM). The sigmoid activation
function is used in the output layer, as a document may have mul-
tiple labels for each taxonomy level in our overall output label
hierarchy.

The first output layer is as follows:

PM = siдmoid(wcv + bc ),

where wc and bc are the weights and biases in a fully connected
layer.

The next output layer is derived from the current output layer
by either using maximum or average pooling. When maximum
pooling is used, we have:

pkm−1 = max
j

p
j
m ,

while with average pooling:

pkm−1 = avgjp
j
m ,

where the taxonomy node j at levelm is a child of taxonomy node
k at levelm − 1.

The loss function at levelm is a sigmoid cross entropy loss, which
is as follows:

Jm = −
∑
d

Cm∑
k=1

(
ykm logpkm + (1 − y

k
m ) log (1 − p

k
m )

)
, (5)

where Cm is the size of taxonomy at level m, which is also the
dimension of the output layer that represents levelm of the taxon-
omy.
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The overall training loss:

J =
M∑

m=1
ωm Jm , (6)

where ωm is the weight on levelm. The weights ωm are hyperpa-
rameters of this model.

3 EXPERIMENTAL RESULTS
3.1 Dataset
We evaluate the effectiveness of our architecture by using the task
of classifying Shopify app descriptions to a hierarchicaly-structured
app category labels [3], where an app category reflects a (one of)
functionality of an app. The dataset contains 1402 app descriptions,
where we randomly choose 1100 apps for training and 302 apps
for testing. Each app has three levels of labels, i.e., the distance
between the top level label and bottom level label is equal to two.
An app may have multiple labels on the same taxonomy label. The
input documents to the model are app descriptions, for an example
see Figure 2.

3.2 Model Variations
We evaluate different variations of our proposed architecture, which
are as follows:
• Model variation with single output layer, where we set ω =
[0, 0, 1]. We use maximum pooling, and directly use hidden
states of the GRU for attention. This variation is denoted as
HAN-MAX-SIN-HID.
• Model variation with hierarchical output layer, where we set
ω = [0.2, 0.3, 0.5]. We use maximum pooling, and use hidden
states of the GRU for attention. This variation is denoted as
HAN-MAX-HIE-HID.
• Model variation with hierarchical output layer, where we set
ω = [0.2, 0.3, 0.5]. We use average pooling, and use hidden
states of the GRU for attention. This variation is denoted as
HAN-AVG-HIE-HID.
• Model variation with hierarchical output layer, where we
set ω = [0.2, 0.3, 0.5]. We use maximum pooling, and use
an MLP layer to project hidden states of the GRU to a new
feature space for attention. This variation is denoted as HAN-
MAX-HIE-MLP.

3.3 Implementation Details
We use NLTK package 1 to split and tokenize documents into sen-
tences. For word sequence learning, we use a static pretrained Glove
word vectors [14] as sequence inputs to the GRU. The pretrained
word vectors are 200-dimensional2, trained using the Wikipedia
and Gigaword data with 6B tokens and 400K words. The word vec-
tors are kept as static in the training process, as in our setting our
documents are short and the word occurrences are relatively few,
and so tuning the word vectors during the training process has a
high risk of overfitting.

We set the GRU hidden state dimension as 50 in sentence en-
coding and 100 in document encoding for all network variations.
1www.nltk.org/
2glove.6B, https://nlp.stanford.edu/projects/glove/

Therefore, the dimensionalities of sentence and document represen-
tations are 100 and 200 respectively due to a bidirectional network
structure. We use 100 dimensions for document encoding because
more information is required to capture the complex taxonomy
structure in a document. We use the Adam optimizer [13] to train
the model with learning rate equals to 1.e-3.

3.4 Results and analysis
The performance is measured using a metric that is useful for a
downstream application of this classification task. The quality is
measured by the hit-rate at k (HR@k), and set k = 3. An app is
considered as correctly classified at a particular taxonomy level if
at least one of the top-3 predictions on that level is a ground truth
label. The classification results are measured on the three levels
separately. The overall metric HR@3 the percentage of apps that
are correctly classified. The experimental results of the four HAN
model variants are shown in Table 1.

From the experimental results we can see that HAN-MAX-HIE-
HID performs best on all the three taxonomy levels. The hierar-
chical output network structure with weighted cross entropy loss
functions takes advantage of prior taxonomy knowledge during
model training, resulting in a considerable performance gain when
compared to the variation with a single output layer at the bot-
tom level (HAN-MAX-SIN-HID). It is interesting to see that even
though HAN-MAX-SIN-HID directly learns the bottom level (the
most granular level), it is inferior to HAN-MAX-HIE-HID not only
at the top andmiddle level, but also at the bottom level (we observed
5.3% increase of HR@3). The results also show that maximum pool-
ing outperforms average pooling in the output layers for prediction,
and for our setting, omitting the use of an MLP layer to project the
GRU hidden states for attention yields better performance.

4 CONCLUSION
In this paper, we have proposed a few architecture variations for
hierarchical classification tasks based onHierarchical AttentionNet-
works. By incorporating the taxonomy prior knowledge in model
training, some variations are more performant in the task of clas-
sifying to a tree-structured output label space than the baseline
variation with a single output layer.
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Figure 2: App description example
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