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ABSTRACT
Representing and comparing graphs is a central problem in many
fields. We present an approach to learn representations of graphs
using recurrent neural network autoencoders. Recurrent neural
networks require sequential data, so we begin with several meth-
ods to generate sequences from graphs, including random walks,
breadth-first search, and shortest paths. We train long short-term
memory (LSTM) autoencoders to embed these graph sequences into
a continuous vector space. We then represent a graph by averaging
its graph sequence representations. The graph representations are
then used for graph classification and comparison tasks. We demon-
strate the effectiveness of our approach by showing improvements
over the existing state-of-the-art on several graph classification
tasks, including both labeled and unlabeled graphs.

KEYWORDS
Representation learning, Deep Learning, Recurrent Neural Net-
works, Graph Classification

1 INTRODUCTION
We address the problem of comparing and classifying graphs by
learning their representations. This problem arises in many domain
areas, including bioinformatics, social network analysis, chemistry,
neuroscience, and computer vision. For instance, in neuroscience,
comparing brain networks represented by graphs helps to identify
brains with neurological disorders [43]. In social network analy-
sis, we may need to compare egonetworks to detect anomalies [1]
or to identify corresponding egonetworks across multiple social
networks. Cutting across domains, we may be interested in under-
standing how to distinguish the structure of a social network from
a biological network, an authorship network, a computer network,
or a citation network [33]. In some tasks, we need to quantify the
similarity between two graphs. For example, in pattern recognition
tasks such as handwriting recognition, we need to measure the
similarity between graphs derived from handwriting images [14].

We consider the setting in which we want to compare graphs
without necessarily finding any node correspondence between
them. Existing graph comparison methods can be categorized into
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Figure 1: Learned graph representations in Proteins [5]
dataset, which has two classes: enzyme (red) and non-
enzyme (blue). The plot is generated by t-SNE [29] and the
two highlighted graphs are generated by Gephi [2].

three main (not necessarily disjoint) classes: feature extraction,
graph kernels, and graph matching.

Feature extraction methods compare graphs across a set of fea-
tures, such as specific subgraphs or numerical properties that cap-
ture the topology of the graphs [4, 30]. The efficiency and per-
formance of such methods is highly dependent on the feature se-
lection process. Most graph kernels [44] are based on the idea of
R-convolutional kernels [19], a way of defining kernels on struc-
tured objects by decomposing the objects into substructures and
comparing pairs in the decompositions. For graphs, the substruc-
tures include graphlets [39], shortest paths [6], random walks [16],
and subtrees [38]. While graph kernel methods are effective, their
time complexity is quadratic in the number of graphs. Graph match-
ing algorithms use the topology of the graphs, their nodes and
edges directly, counting matches and mismatches [8, 36]. These
approaches do not consider the global structure of the graphs and
are sensitive to noise.

In this paper, we propose an unsupervised approach for learning
graph representations using long short-termmemory (LSTM) recur-
rent neural networks [22]. An unsupervised graph representation
approach can be used not only in processing labeled data, such as
in graph classification in bioinformatics, but can be also applied
in many practical applications, such as anomaly detection in so-
cial networks or streaming data, as well as in exploratory analysis
and scientific hypothesis generation. An unsupervised method for
learning graph representations provides a fundamental capability
to analyze graphs based on their intrinsic properties.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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We leverage the LSTM sequence-to-sequence learning frame-
work of [40], which uses one LSTM to encode the input sequence
into a vector and another LSTM to generate the output sequence
from that vector. We use the same sequence as both input and out-
put, making this a sequence-to-sequence LSTM autoencoder [27].
We consider several ways to generate sequences from the graphs,
including random walks, breadth-first search, and shortest paths.
After training the autoencoder, we represent a graph by averag-
ing the encodings of several of its graph sequences. The graph
representations are then used for graph classification.

Figure 1 shows the result of using our approach to embed the
graphs in the Proteins dataset [5] into a 100-dimensional space,
visualized with t-SNE [29]. Each point is one of the 1113 graphs in
the dataset. The two class labels were not used when learning the
graph representations, but we still generally find that graphs of the
same class are clustered in the learned space.

We demonstrate the efficacy of our approach by using our learned
graph representations in classification tasks for both labeled and
unlabeled graphs. We outperform the state-of-the-art on nearly all
datasets considered, showing performance gains over prior graph
kernel methods while also being asymptotically more efficient. In-
deed, the time complexity of our approach is linear in the number
of graphs, while kernel methods are quadratic.

2 RELATEDWORK
While we briefly discussed prior work in Section 1, we now provide
some additional remarks to provide more perspective on other work
in this area.

Recently, some new graph kernels such as Deep Graph Ker-
nel (DGK) [47] and optimal-assignment Weisfeiler-Lehman (WL-
OA) [23] have been proposed and evaluated for graph classification
tasks. The DGK [47] uses methods from unsupervised learning of
word embeddings [31] to augment the kernel with substructure
similarity. WL-OA [23] is an assignment kernel that finds an op-
timal bijection between different parts of the graph. While graph
kernel methods are effective, their time complexity is quadratic in
the number of graphs, and there is no opportunity to customize
their representations for supervised tasks.

There has been other work in using neural methods to learn
graph representations. The representations obtained by these ap-
proaches are tailored for a supervised task and are not determined
solely based on the graph structure. Niepert et al. [34] developed a
framework (PSCN) to learn graph representations using convolu-
tional neural networks (CNNs). Deep Graph Convolutional Neural
Network (DGCNN) [48] is another model that applies CNNs for
graph classification. The main difference between DGCNN and
PSCN is the way they deal with the vertex-ordering problem. We
compare to them in our experiments, outperforming them on all
datasets.

Message passing neural networks [17] are another group of
supervised approaches that have been recently used for graph
structured data, such as molecular property prediction in chem-
istry [13, 17, 28]. Duvenaud et al. [13] introduced a CNN to create
“fingerprints” (vectors that encode molecule structure) for graphs
derived by molecules. The information about each atom and its
neighbors are fed to the neural network, and neural fingerprints are

used to predict new features for the graphs. Bruna et al. [7] proposed
spectral networks, generalizations of CNNs on low-dimensional
graphs via graph Laplacians. Henaff et al. [20] and Defferrard et
al. [11] extended spectral networks to high-dimensional graphs.
Scarselli et al. [37] proposed graph neural networks (GNN) and find
node representations using random walks. Li et al. [28] extended
GNNs with gating recurrent neural networks to predict sequences
from graphs. In general, neural message passing approaches can suf-
fer from high computational and memory costs, since they perform
multiple iterations of updating hidden node states in graph repre-
sentations. However, our unsupervised approach obtains strong
performance without the requirement of passing messages between
vertices for multiple iterations.

Graph2vec [32] is an unsupervised method inspired by document
embedding models [25]. This approach finds a representation for
a graph by maximizing the likelihood of graph subtrees given the
graph embedding. Our approach outperforms this method by a large
margin. Graph2vec suffers from its lack of capturing global infor-
mation in the graph structure by only considering subtrees as graph
representatives. Other methods have been developed to learn rep-
resentations for individual nodes in graphs, such as DeepWalk [35],
LINE [41], node2vec [18], and many others. These methods are not
directly related to graph comparison because they require aggre-
gating node representations to represent entire graphs. However,
we compared to one representative method in our experiments to
show that the aggregation of node embeddings is not informative
enough to represent the structure of a graph.

3 BACKGROUND
We briefly discuss the required background about graphs and LSTM
recurrent neural networks.
Graphs. For a graph G = (V ,E), V denotes its vertex set and E ⊆

V ×V denotes its edge set.G is called a labeled graph if there is a
labeling function label : V → L that assigns a label from a set of
labels L to each vertex. The graph G is called an unlabeled graph if
no label has been assigned to each vertex in the graph.
Long short-term memory (LSTM). An LSTM [22] is a recurrent
neural network (RNN) designed to model long-distance dependen-
cies in sequential data. We denote the input vector at time t by xt
and we denote the hidden vector computed at time t by ht . At each
time step, an LSTM computes a memory cell vector ct , an input
gate vector it , a forget gate vector ft , and an output gate vector ot :

it = σ (Wixt +Uiht−1 + Kict−1 + bi )

ft = σ (Wf xt +Uf ht−1 + Kf ct−1 + bf )

ot = σ (Woxt +Uoht−1 + Koct−1 + bo ) (1)
ct = ft ⊙ ct−1 + it ⊙ tanh(Wcxt +Ucht−1 + bc )

ht = ot ⊙ tanh(ct )

where ⊙ denotes elementwise multiplication, σ is the logistic sig-
moid function, eachW is a weight matrix connecting inputs to
particular gates (denoted by subscripts), each U is an analogous
matrix connecting hidden vectors to gates, each K is a diagonal
matrix connecting cell vectors to gates, and each b is a bias. We
refer to this as an “LSTM encoder” because it converts an input
sequence into a sequence of hidden vectors ht . We will also use a
type of LSTM that predicts the next item x in the sequence from
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ht . This architecture, which we refer to as an “LSTM decoder,” adds
the following:

x = д(ht ) (2)

where д is a function that takes a hidden vector and outputs a pre-
dicted observation x . With symbolic data, д typically computes a
softmax distribution over symbols and returns the max-probability
symbol. When using continuous inputs, д could be an affine trans-
form of ht followed by a nonlinearity.

4 APPROACH OVERVIEW
We propose an unsupervised approach for learning representations
of labeled and unlabeled graphs. Our goal is to learn graph em-
beddings such that graphs with similar structure lie close to one
another in the embedding space. We seek to learn a mapping func-
tion Φ : G → Rd that embeds a graphG into a d-dimensional space.
We are interested in methods that scale linearly in the number
of graphs in a dataset, as opposed to graph kernel methods that
require quadratic time.

Our approach uses autoencoders [21], which form one of the
principal frameworks of unsupervised learning. Autoencoders are
typically trained to reconstruct their input in such a way that they
learn useful properties of the data. There are two parts to an au-
toencoder: an encoder that maps the input to some intermediate
representation, and a decoder that attempts to reconstruct the in-
put from this intermediate representation. For graphs, we need to
decide how to represent graphs in a form that can be encoded and
then reconstructed. We do this by extracting sequences of symbols
from the graphs that we want to represent. Section 5 describes
several methods for doing this, including the use of random walks,
shortest paths between all pairs of nodes, and paths derived from
breadth-first search. These sequences can also be generated for
unlabeled graphs.

Given sequences from a graph, we then need an autoencoding
framework that can handle variable-length sequences. We choose
LSTMs for both the encoder and decoder, forming an LSTM autoen-
coder [27, 40]. LSTM autoencoders use one LSTM to read the input
sequence and encode it to a fixed dimensional vector, and then use
another LSTM to decode the output sequence from the vector. We
consider several variations for the encoder and decoder, described
in Section 6. We train our LSTM autoencoders on sequences pooled
from a set of graphs. We experiment with two training objectives,
described in Section 7.

Given the trained encoder LSTMenc , we define the graph em-
bedding function Φ(G) as the mean of the vectors output by the
encoder for graph sequences extracted from G:

Φ(G) =
1

|Seq(G)|

∑
s ∈Seq(G)

LSTMenc(s) (3)

where Seq(G) is the set of sequences extracted fromG.1 We use Φ
to represent graphs in our experiments in Section 8, demonstrating
state-of-the-art performance for several graph classification tasks.

1Using the mean outperformed max pooling in our experiments so we only report
results using the mean in this paper.

5 GENERATING GRAPH SEQUENCES
We use Random Walks, Shortest Paths, and Breadth-First Search to
generate sequences. These sequences are then used to train our
LSTM autoencoders.

Random Walks (RW): Given a source node u, we generate a
random walkwu with fixed lengthm. Let vi denote the ith node in
wu , starting with v0 = u. vt+1 is a node from the neighbors of vt
that is selected with probability 1/d(vt ), where d(vt ) is the degree
of vt .

Shortest Paths (SP): We generate all the shortest paths between
each pair of nodes in the graph using the Floyd-Warshall algo-
rithm [15].

Breadth-First Search (BFS): We run the BFS algorithm at each
node to generate graph sequences for that node. The graph se-
quences for the graph include the BFS sequences starting at each
node in the graph, limited to a maximum number of edges from
the starting node. We give details on the maximum used in our
experiments below.

5.1 Embedding vertices
When creating graph sequences for training our autoencoders, we
need to represent individual vertices as vectors. We use Emb(v) to
denote the embedding of vertex v . For labeled graphs, we can use
the vertex labels to define Emb(v), but for unlabeled graphs it is less
clear how to do this. Our solution, which we use for both labeled
and unlabeled graphs, is to use theWeisfeiler-Lehman (WL) algo-
rithm [46]. This algorithm is used as a graph isomorphism test that
determines whether two graphs are isomorphic. It is known as an
iterative vertex classification or vertex refinement procedure [38].

The WL algorithm uses multiset labels to encode the local struc-
ture of the graphs. The idea is to create a multiset label for each
node using the sorted list of its neighbors’ labels. Then, the sorted
list is compressed into a new value. This labeling process continues
until the new multiset labels of the two graphs are different or the
number of iteration reaches a specified limit.

After running theWL algorithm on a graph, we obtain an integer
label for each vertex v . We assign a parameter vector Emb(v) to
each unique integer label. Emb(v) is a vector in a d-dimensional
space where each entry is initialized with a draw from a uniform
distribution with range [−1, 1]. These embeddings are updated dur-
ing training. We note that we can apply the Weisfeiler-Lehman
algorithm on both labeled and unlabeled graphs. For unlabeled
graphs, we start the algorithm by assigning the same label to all
vertices. However, for labeled graphs, we start by using the pro-
vided vertex labels in the graph. So, for labeled graphs, WL can
produce a richer, more informative vertex labeling because it starts
with the provided labels for the dataset and then enriches the labels
using the neighbors’ labels (thereby capturing the local structure
of each node).

6 SEQ-TO-SEQ AUTOENCODERS
Wediscussed threeways of extracting vertex sequences from graphs
and our approach for embedding vertices. We now describe how
we will learn our graph embedding function.
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We formulate graph representation learning as training an au-
toencoder on vertex sequences generated from graphs. The most
common type of autoencoder is a feed-forward deep neural net-
work, but they suffer from the limitation of requiring fixed-length
inputs and an inability to model sequential data. Therefore, we
focus in this paper on sequence-to-sequence autoencoders which can
support arbitrary-length sequences.

These autoencoders are based on the sequence-to-sequence learn-
ing framework of Sutskever et al. [40], an LSTM-based architecture
in which both the inputs and outputs are sequences of variable
length. The architecture uses one LSTM as the encoder LSTMenc
and another LSTM as the decoder LSTMdec . An input sequence s
with lengthm is given to LSTMenc and its elements are processed
one per time step. The hidden vector hm at the last time stepm is
the fixed-length representation of the input sequence. This vector
is provided as the initial vector to LSTMdec to generate the output
sequence.

Li et al. [27] adapted the sequence-to-sequence learning frame-
work for autoencoding by using the same sequence for both the in-
put and output. They trained the autoencoder such that the decoder
LSTMdec reconstructs the input using the final hidden vector from
LSTMenc . We use this same approach, using our graph sequences in
place of their textual sequences. We develop several modifications
to this model and evaluate their impact in our experiments.

In our experiments, we use several graph datasets. We train a sin-
gle autoencoder for each graph dataset. The autoencoder is trained
on a training set of graph sequences pooled across all graphs in the
dataset. After training the autoencoder, we obtain the representa-
tion Φ(G) for a single graphG by encoding its sequences s ∈ Seq(G)
using LSTMenc , then averaging its encoding vectors, as in Eq. (3).

S2S-AE: This is the standard sequence to sequence autoencoder
inspired by [27] that we customize for embedding graphs. We use
henct to denote the hidden vector at time step t in LSTMenc and hdect
to denote the hidden vector at time step t in LSTMdec . We define
shorthand for Eq. 1 as follows:

henct = LSTMenc(Emb(vt ),henct−1) (4)

where Emb(vt ) takes the role of xt in Eq. 1. The hidden vector at
the last time step henclast ∈ R

d denotes the representation of the input
sequence, and is used as the hidden vector of the decoder at its first
time step:

hdec0 = henclast (5)
The last cell vector of the encoder is copied over in an analogous
way. Then each decoder hidden vector hdect is computed based on
the hidden vector and vertex embedding from the previous time
step:

hdect = LSTMdec(Emb(vt−1),hdect−1) (6)

The decoder useshdect to predict the next vertex embedding Emb(vt )
as in Eq. 2. We have two different loss functions to test with this
model. First, we consider the node embeddings fixed and compute
a loss based on the difference between the predicted vertex em-
bedding Emb(vt ) and the true one Emb(vt ). Second, we update the
node embeddings in addition to the model parameters using a cross
entropy function. We discuss training in Section 7. For Emb(v0),
we use a vector of all zeroes.

S2S-AE-PP: In the previous model, LSTMdec predicts the embed-
ding of the vertex at time step t using hdect−1 and the true vertex
embedding at time step t − 1, Emb(vt−1). However, this may enable
the decoder to rely too heavily on the previous true vertex in the
path, thereby making it easier to reconstruct the input and reduc-
ing the need for the encoder to learn an effective representation of
the input sequence. We consider a variation in which we use the
previous predicted (PP) vertex Emb(vt−1) instead of the previous
true one:

hdect = LSTMdec(Emb(vt−1),hdect−1) (7)
This forces the encoder and decoder to work harder to respectively
encode and decode the graph sequences. This variation is related to
scheduled sampling [3], in which the training process is changed
gradually from using true previous symbols to using predicted
previous symbols more and more during training.

S2S-AE-PP-WL1,2: This model is similar to S2S-AE-PP except that,
for each node in the sequence, we use two embeddings correspond-
ing to different stopping iterations of the WL algorithm. We use
x1t to denote the embedding of the label produced by one iteration
of WL and x2t for that produced by two iterations of WL. Eq. 1
is modified to receive both as inputs; e.g., the first line of Eq. 1
becomes:

it = σ (W1t x1t +W2t x2t +Uiht−1 + Kict−1 + bi )

The other equations are changed analogously. The embeddings for
both the WL1 and WL2 labels are learned.

S2S-N2N-PP: This model is a “neighbors-to-node” (N2N) predic-
tion model and uses randomwalks as graph sequences. That is, each
item in the input sequence is the set of neighbors (their embeddings
are averaged) for the corresponding node in the output sequence:

henct = LSTMenc( Avд
vi ∈nbrs(vt )

(Emb(vi )),henct−1) (8)

where nbrs(v) returns the set of neighbors of v and we predict the
nodes in the random walk via the decoder as in Eq. 7. Unlike the
other models, this model is not an autoencoder because the input
and output sequences are not the same.

7 TRAINING
Let S be a sequence training set generated from a set of graphs.
The representations of the sequences s ∈ S are computed using the
encoders described in the previous section. We use two different
loss functions to train our models: squared error and categorical
cross-entropy. The goal is to minimize the following loss functions,
summed over all examples s ∈ S , where s : v1, . . . ,v |s | .

7.1 Squared Error
We used the squared error (SE) loss function for theWL embeddings
that are fixed and are not considered as trainable parameters of
the model. We include a nonlinear transformation to estimate the
embedding of the tth vertex in s using the hidden vector of the
decoder at time step t :

Emb(vt ) = ReLU(hdect W + b) (9)

where ReLU is the rectified linear unit activation function andW
and b are additional parameters.



Learning Graph Representations with Recurrent Neural Network Autoencoders KDD’18 Deep Learning Day, August 2018, London, UK

Given the predicted vertex embeddings for the sequence s , the
squared error loss function computes the average of the element-
wise squared differences between the input and output sequences:

lossSE(s) =
1
|s |

|s |∑
t=1




Emb(vt ) − Emb(vt )



2
2

(10)

7.2 Categorical Cross Entropy
We use the categorical cross entropy (CE) loss function for experi-
ments in which we update the vertex embeddings during training.
We predict the t th vertex as follows:

vt = argmax
l ∈L

(hdect .Emb(l)) (11)

where L is the set of labels and . denotes dot product. The loss com-
putes the categorical cross entropy between the input embeddings
and the predicted output embeddings:

lossCE(s) = −

|s |∑
t=1

logp(vt = l) (12)

where l denotes the true label of vertex vt , and the predicted prob-
ability of the true label is computed as follows:

p(vt = l) =
eh

dec
t .Emb(l )∑

l ′∈L
eh

dec
t .Emb(l ′)

(13)

8 EXPERIMENTS
In this section, we evaluate our representation learning procedure
on both labeled and unlabeled graphs. We use our learned represen-
tations for the task of graph classification using several benchmark
datasets and compare the accuracy of our models to state-of-the-art
approaches.

8.1 Datasets
For our classification experiments with labeled graphs, we use six
datasets of bioinformatics graphs. For unlabeled graphs, we use six
datasets of social network graphs.
Labeled graphs: The bioinformatics benchmarks include several
well known datasets of labeled graphs. MUTAG [10] is a dataset of
mutagenic aromatic and heteroaromatic nitro compounds. PTC [42]
contains several compounds classified in terms of carcinogenic-
ity for female and male rats. Enzymes [5] includes 100 proteins
from each of the 6 Enzyme Commission top level enzymes classes.
Proteins [5] consists of graphs classified into enzymes and non-
enzymes groups. Nci1 and Nci109 [45] are two balanced subsets of
chemical compounds screened for activity against non-small cell
lung cancer and ovarian cancer cell lines respectively.
Unlabeled graphs: We use several datasets developed by [47] for
unlabeled graph classification. COLLAB is a collaboration dataset
where each network is generated from ego-networks of researchers
in three research fields. Networks are classified based on research
field. IMDB-BINARY and IMDB-MULTI include ego-networks for
film actors/actresses from various genres on IMDB, and networks
are classified by genre. The Reddit datasets include graphs that show
the relations between users extracted from different subreddits. The
task is to identify the community each graph belongs to.

8.2 Baselines
We compare to several well known graph kernels: shortest path
kernel (SPK) [6], random walk kernel (RWK) [16], graphlet ker-
nels (GK) [39], and Weisfeiler-Lehman subtree kernel (WLSK) [38].
We report the results obtained by [47] using these methods on all
datasets. We also compare to five recent approaches: Deep Graph
Kernels (DGK) [47], the convolutional neural network method
(PSCN) of [34], DeepGraphConvolutional Neural Network (DGCNN) [48],
the optimal-assignment Weisfeiler-Lehman (WL-OA) kernel [23]
and Graph2vec [32]. We also compare to a graph representation
method based on node2vec [18]; we use it to learn node embeddings
and average them for all nodes in a graph. We report the best results
from prior work on each dataset, choosing the best from multiple
configurations of their methods.

8.3 Experimental setup
For each dataset, we perform 10 fold cross-validation on its graph
representations using a C-SVM classifier from LIBSVM [9] with a
radial basis kernel. Each 10 fold cross-validation experiment is re-
peated 10 times (with different random splits) andwe report average
accuracies and standard deviations. We use nested cross-validation
for tuning the regularization and kernel hyperparameters.

8.4 Hyperparameter selection
We treat three labeled bioinformatics graph datasets (MUTAG,
PTC, Enzymes) and two unlabeled social network datasets (IMDB-
BINARY and REDDIT-BINARY) as development datasets for tuning
certain high-level decisions and hyperparameters of our approach,
though we generally found results to be robust across most values.
Figure 5 shows the effect of dimensionality of the graph represen-
tation, showing robustness across values larger than 50; we use
100 in all experiments below. The dashed lines in the figure show
accuracy when the vertex embeddings are fixed and the solid lines
when the vertex embeddings are updated during training. We use
SE (Sec. 7.1) when the vertex embeddings are fixed and CE (Sec. 7.2)
when we update the vertex embeddings during training. CE consis-
tently outperforms SE and we use CE for all remaining experiments.
We use AdaGrad [12] with learning rate 0.01 and mini-batch size
100.

In the experiments that used BFS for sequence generation, we
only consider vertices that are at most 1 edge from the starting node.
In some cases, this still leads to extremely long sequences for nodes
with many neighbors. We convert these to multiple sequences such
that each has maximum length 10. When doing so, we still prepend
the initial starting vertex to each of the truncated partial sequences.

When using random walks, we generate multiple random walks
from each vertex.We compared randomwalk lengths among {3, 5, 10, 15, 20}.
Figure 6 shows robust performance with length 5 across datasets
and we use this length below.

8.5 Comparing models, embeddings, and
sequences

Figures 2, 3 and 4 show the results of the classification task on the
development labeled graphs for our models, with varying types
of graph sequences (RW, BFS, SP) and label embeddings (Original
labels, WL1, WL2).
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Figure 2: WL embedding (solid: RW,
white hatch: BFS, black hatch:SP)

Figure 3: Type of sequences (solid: WL0,
white hatch: WL1, black hatch:WL2)

Figure 4: Models (solid: RW, white
hatch: BFS, black hatch:SP)

Figure 5: Representation
dimensionality (x axis) vs
classification accuracy (y

axis).

Figure 6: Random walk
length (x axis) vs graph
classification accuracy (y

axis).

Figure 2 shows that using WL labels improves accuracy substan-
tially compared to using the original labels. We show the average of
accuracies of the two autoencoders S2S-AE and S2S-AE-PP (rather
than all four, since S2S-N2N-PP does not have the full range of
substructures and S2S-AE-PP-WL1,2, uses both WL labels together,
thus, not comparable). There is a large gap between accuracies of
the labels generated by the first iteration of the WL algorithm and
original labels across all models and sequence types. This provides
strong evidence that WL can enrich the provided vertex labels in a
way that improves graph representations by capturing additional
local node structure.

The number of unique labels increases with more iterations of
WL. Although distinctive labels provide more information about the
local structure of nodes, using WL labels with larger iterations does
not necessarily lead to better graph representations. For example,
the accuracy of Enzymes shows a significant drop when using the
second iteration of the WL algorithm. We believe that the reason
of such a sharp drop in this dataset can be explained by the graphs’
label entropy [26]. Given a graph G and a set of labels L, the label
entropy ofG is defined as H (G) = −

∑
l ∈L p(l) logp(l). The average

label entropy in each dataset is shown in Table 1. The entropy of
the Enzymes dataset increases more than MUTAG and PTC from
the first iteration to the second iteration of WL algorithm.

Moreover, Figure 3 shows that the accuracies of classification
using different types of sequences are very close to each other while
using Weisfeiler-Lehman labels. The difference between types of
sequences is more evident with the original labels. In Enzymes,
shortest paths clearly obtain better accuracies than random walks
and BFS, regardless of the type of embeddings that are used. For the
same type of graphs, Borgwardt and Kriegel [6] similarly observed

that their shortest path kernel was better than walk-based kernels.
We suspect that the reason is related to the clustering coefficient,
a popular metric in network analysis. The clustering coefficient is
the number of triangles connected to node v over the number of
connected triples centered on node v . Having many triangles in
the ego-network of node v may cause the tottering problem in a
walk traversing node v and may generate less discriminative BFS
sequences from that ego-network. Shortest paths prevent tottering
and capture global graph structure. BFS sequences mainly consider
the local topological features of a graph, and random walks collect
a representative sample of nodes rather than of topology [24]. For-
tunately, using the WL labels we can reduce the effect of sequence
type in most settings.

Figure 4 shows the comparison between different unsupervised
models using WL1. Model S2S-AE-PP is better than Model S2S-AE
in nearly all cases. As we conjectured above, Model S2S-AE-PP may
force the encoder representation to capture the entire sequence
since the decoder has less assistance during reconstruction. Model
S2S-N2N-PP obtains higher accuracy in almost all datasets, showing
the benefit of capturing both local neighborhoods and longer paths
(via the use of random walks). With S2S-AE-PP-WL1,2, we only
observe improvements over the other S2S-AE models on the PTC
dataset. With S2S-AE-PP-WL1,2, we only observe improvements
over the other S2S-AE models on the PTC dataset. This suggests
that adding WL labels with different iterations could not provide
more informative graph representations, regardless of the type of
sequences. The reason could be due to the fact that in this model
we add too many parameters for WL labels and our model is not
able to learn meaningful embeddings for these labels, which leads
to poor graph representation.

8.6 Comparison to state-of-the-art
We compare S2S-N2N-PP to the state-of-the-art in Table 1. While
other methods outperform ours in certain datasets, we exceed all
prior results on PTC, Enzymes, and Proteins. Considering that none
of the previous work can outperform the others in all datasets, we
use an average ranking measure to compare the performance of
all approaches to one another. Our approach shows robustness,
achieving the first rank among all methods under this measure.

Table 2 compares our method to prior work on the unlabeled
graph datasets. Our approach establishes new state-of-the-art accu-
racies on all dataset except REDDIT-BINARY.

While our approach performs best when usingWeisfeiler-Lehman,
this is not solely due to the Weisfeiler-Lehman algorithm itself.
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Table 1: Classification accuracies for labeled graph datasets.

Datasets MUTAG PTC Enzymes Proteins Nci1 Nci109
# Graphs 188 344 600 1113 4110 4127

EntropyWL1 2.72 4.03 5.45 5.54 4.21 4.22
EntropyWL2 4.65 7.09 12.60 13.26 8.23 8.25
ClusteringCoef 0 0.0025 0.453 0.51 0.003 0.003

# Labels 7 19 2 3 37 38
# Classes 2 2 6 2 2 2 Avg Ranking
SPK (BK05) 85.2±2.4 58.2±2.4 40.1±1.5 75.1±0.5 73.0±0.2 73.0±0.2 4.5
RWK (G+03) 83.7±1.5 57.8±1.3 24.2±1.6 74.2±0.4 — — —
GK (S+09) 81.7±2.1 57.2±1.4 26.6±0.9 71.7±0.5 62.3±0.2 62.6±0.1 5.5

WLSK (S+11) 80.7±3.0 57.0±2.0 53.1±1.1 72.9±0.5 80.1±0.5 80.2±0.3 5.5
node2vec (G+16) 82.01±1.0 55.60±1.4 19.42±2.3 70.76±1.2 61.91±0.3 61.53±0.9 6.5
DGK (YW15) 87.4±2.7 60.1±2.5 53.4±0.9 75.7±0.5 80.3±0.4 80.3±0.3 2.8
PSCN (N+16) 92.6 62.3 — 75.9 78.6 — —
WL-OA (K+16) 86.0±1.7 63.6±1.5 59.9±1.1 76.4±0.4 86.1±0.2 86.3±0.2 1.8

graph2vec (N+17) 83.15±9.2 60.17±6.9 — 73.30±2.0 73.22±1.9 74.26±1.5 —
DGCNN (Z+18) 85.83±1.6 58.59±2.4 — 75.54±0.9 74.44±0.4 — —
S2S-N2N-PP 89.86±1.1 64.54±1.1 63.96±0.6 76.61±0.5 83.72±0.4 83.64±0.3 1.3

Table 2: Classification accuracies for unlabeled graph datasets.

Dataset COLLAB IMDB-
BINARY

IMDB-
MULTI

REDDIT-
BINARY

REDDIT-
MULTI-5k

REDDIT-
MULTI-12k

# Graphs 5000 1000 1500 2000 5000 11929
# Classes 3 2 3 2 5 11 Avg Ranking

node2vec (G+16) 56.06±0.2 50.17±0.9 36.02±0.7 71.31±2.2 33.11±1.7 23.62±0.3 4.0
DGK (YW15) 73.0±0.2 66.9±0.5 44.5±0.5 78.0±0.3 41.2±0.1 32.2±0.1 2.8
PSCN (N+16) 72.6±2.1 71.0±2.2 45.2±2.8 86.3±1.5 49.1±0.7 41.3±0.4 2.1
WL-OA (K+16) 80.7±0.1 — — 89.3±0.3 — — —
DGCNN (Z+18) 73.76±0.49 70.03±0.86 47.83±0.85 — — — —
S2S-N2N-PP 81.75±0.8 73.8±0.7 51.19±0.5 86.50±0.8 52.28±0.5 42.47±0.1 1.0

Some methods shown in Tables 1 and 2 also use Weisfeiler-Lehman
(graph2vec, WLSK, PSCN, and WL-OA) yet our approach outper-
forms them on average.

9 CONCLUSIONS
We proposed an unsupervised approach for learning representa-
tions of graphs using sequence-to-sequence LSTM architectures.
We trained using sequences generated by random walks, shortest
paths, and breadth-first search. Our experiments demonstrate that
our graph representations can increase the accuracy of graph clas-
sification tasks on both labeled and unlabeled graphs, achieving to
our knowledge the best results on several datasets considered.
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