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ABSTRACT

In this paper, we develop a new aggregation technique to
reduce the cost of surveying. Our method aims to jointly
estimate a vector of target quantities such as public opin-
ion or voter intent across time and maintain good estimates
when using only a fraction of the data. Inspired by the
James-Stein estimator, we resolve this challenge by shrink-
ing the estimates to a global mean which is assumed to have
a sparse representation in some known basis. This assump-
tion has lead to two different methods for estimating the
global mean: orthogonal matching pursuit and deep learn-
ing. Both of which significantly reduce the number of sam-
ples needed to achieve good estimates of the true means of
the data and, in the case of presidential elections, can esti-
mate the outcome of the 2012 United States elections while
saving hundreds of thousands of samples and maintaining
accuracy.

Keywords
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1. INTRODUCTION

Surveys are a common way of inferring information about
an entire population. In social polling for example, peo-
ple study how different groups of the population respond to
some binary questions, such as “do you use Facebook?”, “do
you think abortion should be legal?” [3] [2], or “who will
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be the new president?” These polls are frequently used to
make predictions (e.g., predicting presidential elections), for
market analysis (e.g. to answer questions such as which seg-
ments of the population prefers Xbox over PlayStation), or
to obtain feedback. Survey -based companies such as Nielsen
are represented in more than 100 countries and boast rev-
enues of billions of dollars per year. At the same time, con-
ducting a survey is expensive. For example, for conducting a
survey based on a short phone-call interview, survey compa-
nies typically charge customers on the order of $20-$30 per
call; and even small-scale surveys can easily cost up to mul-
tiple tens of thousands of dollars [30]. Nielsen, for example,
employs approximately 40,000 people worldwide, reflecting
the high-labor cost involved in conducting surveys. In ad-
dition, research shows that people are becoming more resis-
tant to answering surveys [19], which may force companies
to make good predictions with only a fraction of the data.
This drives the search for advanced surveying and sampling
strategies that could reduce the number of samples needed
in social surveying.

The underlying fundamental problem in aggregating so-
cial surveying data is averaging. From the sample responses
collected, the survey designer applies averaging to estimate
the true mean response of each group of interest. At first
thought, this problem looks easy: why not just average by
“sample means”? That is, we just average all the samples
collected within each group. In fact, if there is only one
group, then “sample means” is admissible: no other averag-
ing methods could dominate it. However, if there are more
groups, then it is known that “sample means” is not nec-
essarily the best due to the so-called Stein’s paradox [13].
Stein [27] constructs the James-Stein (JS) estimator that re-
covers every single mean using information from all groups,
and shows that it outperforms “sample means” no matter
what the true means are. Efron and Morris [12] cast JS into
an empirical Bayes framework and show that JS estimates
are the result of a prior regularization and shrinkage of the
sample averages.

In this work, we aim to explore the potential of regularization-

based averaging that achieves good estimation while remain-
ing flexible. An inevitable characteristic of the regulariz-
ers would be a sparsity structure, i.e., a limited number



of non-zero parameters. Otherwise, there is little chance
that those parameters could be estimated from data, and
help the reconstruction of the true means. In fact, spar-
sity has already been deployed as a Kkiller feature in sensing
other types of data such as images, sounds, sensor read-
ings, or network conditions. The well-known compressive
sensing framework [10] allows sampling such data at a sig-
nificantly lower rate beyond Shannon-Nyquist limit. This
gain owes much to the fact that natural signals can be spar-
sified — sparsely represented under some known basis such
as wavelets for images and speech. It would be great if we
could similarly apply compressive sensing techniques to so-
cial surveying data. Alas, direct application of compressive
sensing to social surveying is difficult, because social data
(the true means) are too noisy to be sparsified.

We resolve this challenge by leveraging inspirations from
James-Stein estimators. Instead of using sample averages of
all groups as in JS, we consider shrinking the sample aver-
ages towards some unknown global vector, and use compres-
sive sensing to recover this vector from the samples. There-
fore, instead of sparsifying the true means, we propose to
sparsify this unknown global vector. This idea marries the
idea of compressive sensing and averaging estimators in a
coherent framework, which we name compressive averaging.
In this paper, we derive efficient algorithms based on this
novel framework for estimating the true means based on
survey samples. We also provide theoretical insight into the
framework and understanding of when and how it works.
Our evaluations based on real-world surveys indicate that
compressive averaging can yield substantial improvements
over the commonly used surveying methods.

This paper is organized as follows: In section 2, we in-
troduce the problem setting, in section 3 we present com-
pressive averaging, section 4 provides theoretical analysis
of compressive averaging, section 5 shows empirical results,
section 6 discusses related work, section 7 discusses future
work, and section 8 is the conclusion.

2. PRELIMINARIES

A typical economical or sociological survey aims to gather
information about characteristics of a population, such as
incomes, attitudes, or interests. Formally, we assume that
there are T' groups in total, and every group is asked the
same question. The quantity of interest is the average re-
sponse per group, which we denote as u[t] for group t. No-
tice that for binary questions, u[t] is also the probability of
a positive response in group t.

To estimate the quantity w[t], the surveying methodol-
ogy uses two basic steps: sampling and aggregation. For
sampling, researchers send out questionnaires to individ-
ual entities in each group, and obtain samples z;[t](j =
1,2,...,n[t]) for every cell [¢]. Depending on the response
rate and the design of the survey, different number of sam-
ples are collected for each group, denoted as n[t]. A reason-
able model for z;[t] would be

Ber(u[t]) binary case
zlt] ~ { continuous case

Nl 0?12 W
In both models, the average y[t| = >, 2;[t]/n[t] and the

number of samples nt] are the sufficient statistics for esti-
mating u[t]. For convenience, we treat these two cases in a

unified setting:

o’[t]
" ni]

ylt] ~ N (ult] )- 2
For the continuous case, this approximation is exact; and for
the binary case, the Central Limit Theorem implies that this
approximation is good given a sufficient number of samples.

In the aggregation step, the survey designer performs sta-
tistical inference to estimate the quantity of interest ult]
from samples z;[t]. We would like the estimate to be as ac-
curate as possible. Usually the expenses of data collection
dominates the cost of aggregation. Therefore, to reduce the
overall cost of surveying, we seek to reduce the total number
of samples needed to incur a bearable amount of error.

Finally, note that for convenience we interchangeably use
1 as a function of ¢, or as a vector. The same thing goes for
y, n, and o?2.

2.1 Sample Averaging

The straightforward estimator would just use the “sample
means” y[t] of each group, namely,

fivaelt) = olt) = o0 3 1] )

Sample averaging is also the maximum likelihood estimator,
and is optimal when T' = 1.

2.2 James-Stein Estimators
The James-Stein estimator (JS) [27] shrinks the sample

averages y towards the global mean f = 771 Zthl y[t], the
unweighted average of all y[t]. Precisely,

fusft] = f+ (1 =)+ - (ylt] = ), (4)
where (-)+ = max(0, -), and the shrinkage factor  is
-1

=X Mem-p)"

1]

Where o2 is the true variance of the data. The smaller the
distance between y and f, the more aggressive the shrinkage
is. So the optimal amount of shrinkage is adapted to the
data. By doing so, the James-Stein estimator makes a better
tradeoff between variance and bias, and achieves a better
estimation performance.

3. COMPRESSIVE AVERAGING

3.1 Intuition from Example

To see how sparsity might help improve the estimates, we
first look at an example as shown in Figure 1, where James-
Stein estimators do not work well. Suppose we have the true
means

t |1 2 ... 8 9 10
plt] | 1.0 1.0 1.0 99.0 101.0

and 10 samples are collected from each category with noise
variance o2[t] = 50 for all ¢t. It is well known that JS per-
forms worse when such outliers exist [11] [13]. If we shrink
the sample means towards the global mean, f = 26.95, the
shrinkage parameter becomes very small, v = 0.002. That
is, JS almost becomes sample means.
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Figure 1: Intuitive example where James-Stein estimator
(JS) does not work well. As the sample averages y (MLE)
deviate a lot from global mean f, the shrinkage effect that
JS exploits becomes negligible. So JS reduces to MLE.

A natural idea to improve JS would be to prevent the
cases t > 9 and ¢t < 9 from sharing the same global mean.
For example, we could construct a global mean f[t],

fm:{}oo iig,lo ) (6)

then we could shrink the estimates towards f[t] so that the
overall risk is much smaller. The problem with this idea is
that when carrying out a survey, such global mean f[t] is
not known a priori. Therefore, it must be estimated from
the data.

3.2 Modeling the Global Mean

At the conceptual level, all we need is a function f[t] that
fits the data well and comes from a restricted model fam-
ily. For the outlier example in Figure 1, we might assume
that f[t] is a sparse combination of various components: a
constant global mean fo[t] := 1, and singleton functions
filt] := I[t = i]. The sparse solution f = fo + fo + fio
is exactly the function we wish for in Equation (6) and is
quite stable due to the occurrence of fo.

In general, we consider a model family F and a function
f[t] € F. Then we explain data through a generative model:

plt] ~ N(f[t], A) (7)
ylt] ~ N (ult], o [t]/n[t]) (8)

For some constant A and with known noise level ¢2[t]. The
marginal distribution of y given f is
ot
A+ —=). 9
o) 9)
The function f encodes our flexible prior about the latent
quantities p, and A controls how strong that prior ought to
be. We jointly estimate both of them from data by mini-
mizing the negative log likelihood of equation 9 which leads
to the following optimization problem:

. —y[t])®
feFA>0 Z A —|— 02[ 1/nt]

ylt] ~ N(f[t],

o?[t]

nlt]

In the case of binary data, we find that modeling the ult]
and y[t] as being generated from a Beta distribution is in-
tractable. Since the maximum variance for a Bernoulli ran-
dom variable is 0.25, we put a prior on A to add a penalty

+ log(A +Z

) (10)

for improbable A and only search in the range of possible
values for A.

Once f and A are computed from the data, the means i
can be estimated using the posterior mode, which is

__o’[tl/nlt] )
A+ a?[t]/n[t]

The core challenge in using Eq.(11) is to devise the family F.
If we allow f[t] to be arbitrary the optimal solution would
be to set f =y which reduces to sample averaging.

Real social data can be noisy and therefore there does not
generally exist a sparse representation for the true means
. The idea of sparsity-based aggregation is that we instead
exploit the sparse representation of reqularizers f, and then
use f to improve the estimates ji of the true means.

To formalize this intuition in the example, we first con-
struct a basis ® = {¢1, @2, ..., dx} with ¢; € RT such that

71 =3 ol (12

+- (ylt) = ). (1)

where a € R¥ is a sparse coefficient vector with ||alo <
k< K.

3.3 Estimating the Global Mean

Now that we know how to model f, we need a method to
determine what f should be. In the next two sections we
present two different ways to do this: orthogonal matching
pursuit and deep learning.

3.3.1 Orthogonal Matching Pursuit

Based on our framework, the first step is to recover a (and
hence f) as well as A empirically from the data. We solve
the optimization problem Eq.(10) by iterating between A
and o.

e Fix a, solve for A. Since A is only a single variable
and we can therefore just use linear search algorithm
to find the optimum.

e Fix A, solve for a. The optimization problem be-
comes

- y[t]
Fer Z A+ [t]/n[t]
s.t.: ||a||o <k (13)

This problem resembles the sparse recovery formulations in
compressive sensing [10]. Therefore, we solve it via similar
techniques. We present a greedy algorithm (Algorithm 1)
based on Orthogonal Matching Pursuit (OMP) [32] with
modifications to handle the heterogenous noise levels.

Due to the connection to compressive sensing, we call this
approach “compressive averaging” (or “compressive survey-
ing”) for aggregating survey data.

3.3.2 Deep Learning

Deep learning [20] has been shown to excel on a wide vari-
ety of tasks such as computer vision [28], speech recognition
[17], and high energy physics [7]. We propose using deep
learning to learn f. The input to the network is the y, o2,
and a scaled n. The target output is the global mean f.

Using the assumption that the global mean is sparsely rep-
resented in some given basis, ®, we can generate examples
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Figure 2: The process of generating training data for the deep neural network.

Algorithm 1 Modified Orthogonal Matching Pursuit for
solving a.

Input. Sample average y, basis ® = (¢1,. ..
Let A = diag(n[1]/0?[1], ..., n[T]/c?[T)).
Compute y' = A%y, P =A2d.
Let residual ro = y, support set Sy = 0.
fori=1— kdo
Find j = arg max; r_; ¢} /||¢}||2
Si=8,_1U {]}
Concatenate @,

,Pr).

(P, ¢5)-
Compute as, ((I'g:@gi)*lfbgy.
Update residual r; = y — @, as; .

end for

Output.

11:

12: Support set Sk and coeflicients as, .

of a global mean by first randomly generating sparse coeffi-
cients « such that ||allo < k < K and then, using equation
12, produce a global mean f. Given the global mean f and
variance A (where A is randomly selected from a given range
of numbers), we can generate true means p using equation
7. Given the true means u[t], randomly generated o?[t], and
randomly generated nlt], we can then get y[t] using equation
8. For the binary case, o2[t] is determined by u[t]. Figure
2 gives a visualization of the process of generating data to
train the neural network. The benefit to this approach is we
have, for all intents and purposes, infinite training data since
we can always generate new examples. We take advantage
of this by generating new data every 10 epochs.

The deep neural network (DNN) we used has 3 layers with
1000 hidden units in each layer. We use the adaptive piece-
wise linear (APL) activation units [5]. For every hidden layer
we initialize the weight matrices with the “Xavier” filler [16].
The loss function is half the mean squared error between the
output of the DNN and the global means:

T

> (fmlt] = fnlt])?

t=0

! (14)

el

LO) = 512 >

Where f is the output of the DNN and M is the batch
size. We use M = 100 for our experiments. We train the
DNN using backpropagation and momentum [23] for 60,000

iterations. There learning rate starts at 0.1 and decays ac-
cording to % where i is the iteration. The momentum
starts at 0.5 and goes to 0.9 over 5000 iterations. No weight
regularization is used.

After training the DNN, we optimize equation 10 by first
obtaining f by doing a feedforward pass through the DNN.
Then we can obtain A by fixing f to be the output of the
DNN and optimizing equation 10.

As a note, we tried using a DNN to directly predict the
true means u, however, this proved too hard for the DNN
to learn and performance was not any better than sample
averaging. It seems that it is much better to first train a
DNN to predict f and then shrink y to this prediction.

3.4 Choosing the Basis

A wide range of social surveys are conducted periodically,
such as the General Social Survey [1]. For example, to study
how presidential approval rates evolve, investigation insti-
tutes send out surveys monthly or yearly. So each category
t corresponds to a month/year. Borrowing techniques from
compressive sensing literature, we treat y[t] as a discrete
signal in time ¢, and use wavelets as the basis.

The basis we use in all the experiments is the Daubechies
least-asymmetric wavelet packet (“wpsym” in MATLAB).
The wavelet can be constructed at multiple scales, and we
use the first four coarse scales (equivalent to 8 lowest fre-
quency components). The sparsity level k is set to be 3.

The reason we select this basis is because the components
of the basis can easily be used to make smooth curves. A
basis such as the Haar wavelets would be more difficult since
each component is discontinuous. k = 3 was chosen because
it will lead to sparse solutions. We use the 8 lowest frequency
components instead of all the frequency components of the
basis because the higher frequency components will fit high
variations in the data, which, in the case of noisy data, will
lead to poor solutions.

However, in section 5.3 our experiments show that other
smooth basis functions such as the Discrete cosine transform-
IT basis and the polynomial basis both give good results,
while the discontinuous Haar wavelets sometimes perform
poorly. Our experiments show that good results can be ob-
tained with varying levels of k. In addition, our experiments



show that using the low frequency components in the basis
is important for good performance.

4. THEORETICAL ANALYSIS

In this section, we provide theoretical insights into the
performance of the orthogonal matching pursuit (compres-
sive averaging) algorithm for estimating the global mean.
For simplicity, we assume all noise levels are the same and
equal to 1, i.e. o2[t]/n[t] = 1.

LEMMA 4.1. Suppose the support of o is S, and let g
denote the sub-dictionary with columns restricted to index
S. If &g is full-rank in column, then

f=0s(®sPs) ' Pgy (15)

Proor. Notice when we assume o[t]/n[t] = 1, the opti-
mization problem Eq.(13) for solving o does not involve A
at all. Given the support of «, the problem has a quadratic
form, and the optimal solution is just Eq.(15). [

Therefore, given S, the sensitivity matrix

Gij = gﬁﬂ =05(P5Ds) DS (16)

is also the projection operator that f = Gy.

LEMMA 4.2. Every optimal solution (A, f) of Eq.(10) sat-
isfies the following equation,
1T
A+l If =yll3

ProOOF. Given any solution of f, the optimal solution for
A must satisfy Eq.(17). O

(17)

THEOREM 4.3. Define \ as

L lleOa — )3
[[M —yll3
and
k= |lello

Notice A\, k are also random variables dependent on y. We
have

T2 2T  2T(k—)\)
+ ] (18)

W=l [1f = yll3

Proor. The total squared error can be decomposed as

8/1[71]]

ayli]

Plug in the expression of ji from Eq.(11) , we would have

EuH,&_NHQ =T-E,|

EHH[L*NHQ :Eu[\ly*ﬂllz] —T+2-E,f

T2 — 2T

[1f—vll3

" 2TTr(G)Hf —yl3 - (f f4y)TGT(f - y)]
||f—yH2

For G = @s(fhgés)*l‘bg, we have GT =G, G-G = G and
Tr(G) = k. Then we can prove the theorem. [

Eu”ﬂ_MHQ =T —Eu

This theorem sheds light into when compressive averaging
is useful. First of all, the following corollary shows it is safe
to use compressive averaging whenever sampling averaging
is applicable.

COROLLARY 4.4. Compressive averaging dominates sam-
ple averaging for T > 2, i.e. for all p,

Ru(fica) < Ru(fmLs). (19)

Next, compared to James-Stein estimator, the following
corollary shows that compressive averaging could introduce
an overhead compared to JS. And the overhead is small when
the representation of f[t] is sparse.

COROLLARY 4.5. The relationship of compressive averag-
ing and James-Stein estimator can be established as

2n(\ — k)
TR

Notice that A € [Amax, Amin] Where Amax and Amin are the
largest and smallest eigenvalue of G. This implies k& > .
Therefore, the right-hand side is always non-positive.

So when do we expect this approach to work? This ap-
proach is useful because it address a fundamental problem
in James-Stein estimators: global means could be an inap-
propriate prior and lead to small shrinkage. This could have
significant advantage when sparsity structure does exist in
the problem. But we also must be aware that compres-
sive averaging makes a tradeoff by reducing the deviation
[|f — yll2 at the cost of an additional possible penalty term
that is related to the inherent sparsity of the regularizing
global function.

Ru(fica) — Ru(fss) = Ey

5. EXPERIMENTS

As baselines, we include sample averaging (Avg) and James-
Stein estimator (JS). We also include multi-task averag-
ing [15] (MTAvg), which uses a regularization that enforces
all estimates to be close to one another. We use constant
multi-task averaging since experiments from [15] show that
this often gives the best performance. When referring to
compressive averaging in our plots, using orthogonal match-
ing pursuit to predict f is labeled as OMP, whereas the using
a deep neural network (DNN) to predict f is labeled as DNN.

Sections 5.1 and 5.2 show the results of estimating the
means of the GSS and Xbox datasets (the datasets are ex-
plained in their respective sections). The evaluation metrics
used in section 5.1 and 5.2.2 is the mean absolute difference
between each true mean (the mean when 100% of the data
is used) and each estimated mean. The estimated and true
means are first converted to percentages and then the mean
absolute difference between the two percentages is obtained.
For example, for the presidential election, a mean of 1.8
means that 80% of the people voted for Obama. The eval-
uation metrics in section 5.2.3 are slightly different because
there is only one true mean: the exit poll data on election
day. So, the mean absolute difference is taken between the
estimated mean at the last day of the survey and the exit
poll data.

Section 5.3 investigates how sensitive compressive averag-
ing is to changes in parameters and basis functions. Section
5.4 shows how each method performs when the data is par-
ticularly noisy.

5.1 GSS Data

We take columns from the yearly General Social Survey
(GSS) [1] data: a question regarding gun law (GUNLAW) and
a question regarding women working (FEWORK). GUNLAW asks
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Figure 3: Scatter plot of the true means on two datasets
extracted from the General Social Survey. As we see, the
true means exhibit patterns on the macroscopic scale, but
contains inherent noise in individual groups.

people’s opinions towards whether a police permit should be
required before a person can buy a gun. We put 1 if per-
son answers “FAVOR” and 2 if a person answers “OPPOSE.”
Other answers such as “Don’t Know” are ignored. The data
for this survey is available from 1972 to 2012, with a total of
36,921 samples. We would like to estimate the average ap-
proval rate of carrying a gun without a permit per year. Sim-
ilarly, FEWORK is a question about people’s opinion regarding
married women earning money in business or industry given
their husband is capable of supporting her. Label “1” means
APPROVE and label “2” means DISAPPROVE. It contains
a total of 24,401 samples. Figure 3 shows the scatter plot of
true means of both datasets. The plots show that the true
means of both datasets exhibit macroscopic patterns, but
for each category, there exists inherent noise. We vary the
sampling percentage from 1% to 30%, run each estimator for
30 runs, and compute the mean absolute difference between
the estimated means and the true means (the means when
100% of the data is used). The mean absolute difference is
shown in terms of percentage to provide the readers with an
intuitive interpretation of the results. For example, if the
estimated mean is 1.6 and the true mean is 1.7, this means
that it was estimated that 60% percent disapprove but the
truth is that 70% disapprove, leading to a mean absolute
difference of 10%.

The results are shown in figure 4. One can see that, when
taking small percentages of the total data, the DNN method
outperforms all the other methods and the OMP method al-
most always outperforms all the other methods. For exam-
ple, when 3% of the data is given the DNN method reduces
error rates up to 30% over JS and 45%-61% over Avg.

5.2 Xbox Data for Presidential Election

5.2.1 Preliminaries of Xbox Dataset

We would like to apply compressive averaging to the data
in [33]. The dataset in this paper contains non-representative
polls taken from Xbox users about who they would vote for
in the 2012 presidential elections. The surveys were taken
in the 45 days leading up to the presidential elections and
focuses on the two party (only Obama vs Romney) outcome.
We collect a 1 for “Mitt Romney” and 2 for “Barack Obama.”

Since the Xbox data was not representative of the entire
population, post-stratification [22] was used to correct for
the differences between the population that was sampled
from the Xbox and the true population. To do this, [33]
first splits the samples into cells based on the demographic
information of each sample.

Mean Absolute Difference
-
e

Percentage of Samples

Mean Absolute Difference

15
Percentage of Samples

(b) FEWORK dataset.

Figure 4: Performance of different averaging methods on
estimating the true mean of the dataset.

Given the cell values we can apply post-stratification using
equation 21.

J ~

gps N Zj:1 N;g;
- T<—J A
Zj:l N

Where y; is the estimate for cell j, J is the number of cells,
and N; is the true size of the population in the jth cell. In
addition, the post-stratification estimate for a subpopulation
(i.e. how all college graduates will vote), can be computed
by equation 22.

(21)

g PS _ Zj@]s N;g; (22)
0 = a8 T

Zjer N;
Where Js is the indexes of all the cells that contain the
subpopulation s.

5.2.2 Estimating the Means of the Raw Samples

Since the dataset is not representative, the means of the
sampled data will not, by themselves, give useful informa-
tion. However, we can still verify compressive averaging does
a good job at adjusting means by adjusting the means of the
raw samples as shown in figure 5.

5.2.3 Comparing Estimated Means with Exit Poll Data

To determine how well the algorithm works, the 2012 exit
poll data can be used to estimate the true value for how
subpopulations voted in the 2012 elections. Each subgroup
in the demographics of sex, race, age, education, party 1D,
and ideology was evaluated for accuracy. An example of how
the subgroups of demographics vary across time is shown in
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Figure 5: Performance of predicting the means of the raw
samples of the Xbox dataset.

figure 6. In addition, analysis was performed on the largest
30 two-dimensional demographic subgroups (i.e conservative
males, females between 45 and 64 years old, etc.). For each
subgroup or two-dimensional subgroup that is to be ana-
lyzed, we post-stratify to that subgroup for each timepoint
(i.e. get post-stratified estimate for college graduates at each
timepoint) and use the post-stratified estimates as y, obtain
the estimated means /i, and then get the mean absolute dif-
ference between the estimated mean at the last timepoint
and the 2012 exit poll data. After we have done this for
all the subgroups we obtain the mean and median absolute
differences.

Figure 7 shows the results. We post-stratify on the age,
sex, race, education, party, and ideology demographics. There
were 246,683 respondents surveyed in total. Using only 10%
of the data saves 221,967 samples.

The results show that compressive averaging has around
the same accuracy when using 10% of the data as it does
when using 100% of the data. In addition, when compressive
averaging uses 10% of the data it performs comparable to,
and often even better than, when the Avg method uses 100%
of the data (This is shown in figure Figure 8). The mean or
median absolute difference of the OMP method at 10% is, at
most, greater than the Avg method at 100% by 0.1.

One can notice that in figure 7b that for all the meth-
ods but Avg, there are percentages smaller than 100% at
which they perform better. One reason this might be is
that perhaps the value n is not precise because of post-
stratification. It could be the value of n should be smaller,
meaning we should trust y less, because of noise induced
by post-stratification. Of course, n is smaller for smaller
percentages, which may mean using 10% of the data gives a
better estimate of n. However, we are not absolutely certain
this is the correct explanation.

In addition, figure 7 is the only case in which the OMP
method performs better than the DNN method. This could
be due to the different evaluation methods. In the previous
sections, we were evaluating how close the estimated means
were to the true means. For this task, we are evaluating
how the estimated mean at the very last day compares to
the 2012 exit poll data.

5.3 Sensitivity to Basis and Sparsity Parame-
ters

We test how sensitive compressive averaging is to the spar-
sity parameter k and the choice of the basis. The results for
how the performance varies for choices of k between 1 and
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Figure 6: The average of who the categories in the age and
party demographics said they would vote for across time.
The dashed line represents 1.5 (or 50% voting for Obama).

6 is shown in figure 9. The results show that any choice of
k greater than or equal to 3 does not lead to any significant
decrease in performance.

Figure 10 shows how changing the amount of L lowest fre-
quency components affects performance. Results show that
it is necessary to use a small L. Higher L leads to worse
performance. This is due to the higher frequency compo-
nents fitting high variations in the data; which is especially
problematic for noisy data. Using the 4 lowest frequency
components actually leads to better performance than using
the 8 lowest frequency like we did in our experiments.

Figure 11 shows how the performance varies when using
a different basis. One can see that using the Harr wavelets
results in a significant decrease in performance for the GUN-
LAW dataset. This was expected because Haar wavelets are
discontinuous. The discrete cosine transform-II performs
slightly worse than the basis used in our experiments (wmp-
sym) but performs better than sample averaging, multi-task
averaging, and James Stein in most cases. The polynomial
basis actually outperforms wmpsym.

5.4 Resilience to Noise

We would like to investigate how the estimated means
across time actually look under high noise, we take small
fraction of the samples (as low as only one sample per time-
point) for the GUNLAW dataset and visualize the estimated
means along with the sample means (y) and true means
(1). The plots are shown in figure 12. Of course, most
methods perform very poorly when there is only one sam-
ple per timepoint, however, the DNN method is the closest
to the true means in this case. As more samples are added
the estimated means become closer to the true means, but
even with 1146 total samples, the James Stein and multi-
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Figure 7: The mean and median absolute differences of all
the demographic subgroups as a function of sample ratio. No
adjustments or imputations were made to the cell estimates.
We run 30 different trials at each percentage.

task averaging methods deviate significantly more from the
true mean than the OMP and DNN methods.

6. RELATED WORK

An explanation of Stein’s phenomenon is that the esti-
mator shrinks unbiased maximum likelihood y[t]. Efron
and Morris formalize this intuition through an Empirical
Bayes argument [12]. The key assumption is a hierarchical
Bayesian model, where the means to be estimated are drawn
from a normal distribution centered around zero. This as-
sumption implies that the maximum posterior estimate of
the true means are shrinking the sample averages.

Several extensions of James-Stein estimator have been in-
troduced. Bock [9] considers dependencies between the true
means and uses a covariance matrix to model the sample av-
erages. Senda and Taniguchi [24] develop a type of James-
Stein estimator for time series regression models. It has
been shown in [21] that the James-Stein estimator itself is
not admissible, and is dominated by the positive part of
James-Stein estimator.

The idea of using information from all groups to improve
the estimate of the quantity of a single group falls into
the big realm of Multi-Task Learning (MTL) in the ma-
chine learning and data mining community. Early work in
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Figure 8: This plot shows the results from figures 7 of the av-
erage method with 100% of the samples vs the performance
OMP with only 10% of the samples. Points to the right of
the dashed line means that our method performs better than
the Avg method while using 200,000 fewer samples.

MTL includes Thrun’s “learning to learn” [31], and Baxter’s
“learning internal representation” [8]. One approach to mod-
ern multi-task learning is to build a hierarchical Bayesian
model that infers characteristics shared by all groups [29].
Another line of work relies on a regularizer that penalizes
the estimates for different groups. The types of regulariza-
tion include distance to means [14], trace norm [4], pairwise
distance [18] constraints, etc. These multi-task learning al-
gorithms are usually tailored for regression [26], classifica-
tion [34], feature learning [6], etc. For the survey aggregation
problem, recently Sergey et al. [15] proposed a Multi-Task
Averaging (MTA) approach that adds a penalty term in-
vented in MTL literature to improve the estimates.

7. FUTURE WORK

Results from [33] show that one can use an adjustment
model to impute missing cell data to get even better accu-
racy when doing post-stratification. This introduces a new
problem of adjusting n[t] (the number of samples at each
timepoint ¢) to account for the artificially added informa-
tion which is, to the best of our knowledge, an open research
problem. Preliminary results incorporating this method look
promising.

We have shown how assuming the global mean of a tem-
poral signal is sparsely represented in some basis can im-
prove the estimation of the means. However, spatial data
can be represented as a graph, which [25] showed can also
be sparsely represented in some basis. Using this knowl-
edge, it is possible that spatial data can also benefit from
compressive averaging.

We would also like to extend this method to multi-way
survey data, which can also be applied to the Xbox data.
By dividing the population into demographic cells we could
utilize low-rank matrix factorization techniques to further
reduce the sampling rate required for these types of survey
data.

8. CONCLUSION

In this paper we exploit the temporal relationships be-
tween data by shrinking to an unknown global mean that
is assumed to be sparsely represented in a given basis. We
present two ways of estimating this global mean: orthogonal
matching pursuit and deep learning. In our experiments, we
were able to increase accuracy over sample averaging, James
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our experiments.

Stein estimators, and multi-task averaging. In addition, we
were able to estimate the results of the 2012 presidential
election using 10% of the samples (saving 221,967 samples)
and still getting accuracy similar to or better than sample
averaging with 100% of the samples.
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