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ABSTRACT

Causal discovery algorithms can induce some of the causal
relations from the data, commonly in the form of a causal
network such as a causal Bayesian network. Arguably how-
ever, all such algorithms lack far behind what is necessary for
a true business application. We develop an initial version of
a new, general causal discovery algorithm called ETIO with
many features suitable for business applications. These in-
clude (a) ability to accept prior causal knowledge (e.g., tak-
ing senior driving courses improves driving skills), (b) admit-
ting the presence of latent confounding factors, (¢) admitting
the possibility of (a certain type of) selection bias in the data
(e.g., clients sampled mostly from a given region), (d) abil-
ity to analyze data with missing-by-design (i.e., not planned
to measure) values (e.g., if two companies merge and their
databases measure different attributes), and (e) ability to
analyze data from different interventions (e.g., prior and pos-
terior to an advertisement campaign). ETIO is an instance
of the logical approach to integrative causal discovery that
has been relatively recently introduced and enables the solu-
tion of complex reverse-engineering problems in causal dis-
covery. ETIO is compared against the state-of-the-art and
is shown to be more effective in terms of speed, with only
a slight degradation in terms of learning accuracy, while in-
corporating all the features above.The code is available on
the mensxmachina.org website.
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1. INTRODUCTION

Knowledge of causal relations is necessary to plan effec-
tive interventions, such as launching a new advertising cam-
paign or a promotion. Causal discovery algorithms attempt
to induce some of these relations from data, often presenting
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them in the form of a network such as a causal Bayesian net-
work. Unfortunately, we argue that most approaches leave
much to be desired for a true business application. For ex-
ample, Bayesian networks assume that there are no latent
confounding factors or selection bias, which is unrealistic
and leads to erroneous inductions [21, 19]. Other algorithms
admit latent confounders but are nevertheless brittle to sta-
tistical errors and small sample sizes. Other desired features
of the algorithms are also missing, e.g,. the ability to im-
pose causal prior knowledge such as “no measured quantity
causally affects the age of a client” or to co-analyze data
that follow different distributions, e.g. before and after a
promotion.

Recently, the problem of causal discovery has been formu-
lated as a logic-based inverse engineering problem [25, 14,
13, 24]. The approach has paved the way for algorithms
that are able to handle much more complex settings, impos-
ing fewer, less restrictive assumptions. The price to pay is
increased computational overhead. The main idea is the fol-
lowing: each conditional (in)dependence discovered in the
data through a statistical hypothesis test imposes a con-
straint on the presence or absence of paths in the (unknown)
causal graph, after accounting for the effects of interven-
tions and the presence of selection. The graphs that satisfy
all constraints are possible solutions to the problem. This
approach leverages decades-long research in logic-based in-
ference engines such as SAT solvers, logic-programming, and
answer set programming. ETIO (from the Greek word for
“cause”) is a proposed algorithm that follows this approach
and demonstrates the usefulness and potential of these re-
cent advances to causal discovery on business data. Specifi-
cally, ETIO has the following features important for a busi-
ness application:

Admits latent variables: Latent confounding factors pre-
sent inherent problems to causal Bayesian networks and lead
to erroneous inductions. Confounding factors are quantities
that causally affect two or more of the measured quanti-
ties. For example, if the true graph contains the subgraph
X < L — Y where L is not measured or included in the
data, a dependence is induced between X and Y. Any
Bayesian network algorithm will asymptotically return ei-
ther the network X — Y or X < Y trying to explain the
dependence. The induced network is equivalent to the true
one for predictive purposes but erroneous for causal pur-
poses: neither X nor Y causally affect each other. The
presence of latent confounders is a possibility that cannot be
excluded a priori in most realistic scenarios. ETIO employs
more advanced formalisms and theory to account for the



presence of latent confounders, namely semi-Markov causal
models (SMCM) [22].

Admits selection bias in the data: Selection bias is
another source of errors if ignored. Imagine that X and Y
are two factors with no causal relation between them that
both affect whether a person chooses to stay in New York
State denoted as N. A business that operates in New York
and deals only with local clients gathers data conditional on
N = 1. In their data X and Y will be found dependent. A
Bayesian network algorithm will induce that either X — Y
or X < Y trying to explain the dependence which is wrong
from a causal perspective. Again, for predictive modeling
selection bias presents no problems as long as one applies the
model to the same population, in this case New York State
clients. However, if ignored, the presence of correlations due
to selection (conditioning) leads to causal inductions that
are wrong even for the same population. ETIO can handle
selection that depends on the observed variables, but not on
latent confounders and observed variables at the same time.
Handling data with missing-by-design values: Sup-
pose a business merges two of their internal databases con-
taining some common variables stored and some distinct,
e.g., in case of an acquisition of a new company. Thus, the
pooled data matrix contains large blocks of missing values.
These values are called missing-by-design in the statistical
terminology [8]. Using the logic-based approach, ETIO is
able to make use of all of the available data and make non-
trivial inferences such as inducing relations between vari-
ables never jointly measured (similarly to [27]).

Handling data from different interventions: In an-
other scenario, a business initiates an intervention, e.g., a
promotion, an ad campaign, or a change in their portal.
The data distribution before and after the intervention may
be different; however, the internal causal mechanisms that
determine customer behavior have not changed, only the
exogenous conditions and stimuli to the customers. ETIO
looks for causal models that fit to the data after accounting
for the effect of manipulations similarly to [14, 13, 24] and
can handle data under different interventions and distribu-
tions.

Incorporating Causal or Associative Prior Knowl-
edge: Typically, the semantics of the variables carry impor-
tant causal information. For example, no client attribute
causally affects their age; dropping one’s subscription occurs
after all other recorded variables and thus cannot be causally
affecting any other measured quantity, such as the cost of
the insurance plan. More complicated scenarios are also
possible to encode such as asserting the belief that taking
senior driving courses improves driving skills (i.e., asserting
the presence of a causal path in the graph). ETIO accepts
this type of causal knowledge facts and employs them to
constrain the set of admissible solutions.

In the next sections, we demonstrate and explain the ca-
pabilities of ETIO on a use case from the insurance domain.
We also perform empirical evaluation experiments against
the only other alternative in the literature [13]. The latter
does not implement all the features of ETIO but follows a
similar approach and could potentially be extended to this
direction. The main differences are the encoding scheme and
conflict resolution strategy used. In simulated experiments
on observational data ETIO shows better scaling up, while
performing slightly worse in terms of learning accuracy. We
also compare ETIO against FCI [21, 28], a prototypical algo-

rithm for causal discovery admitting latent confounders and
selection bias in the data. ETIO and FCI perform similarly
in terms of learning accuracy. However, the main goal and
contribution of this paper is to introduce and illustrate the
potential of the logic-based approach to causal discovery to
address the needs of business applications.

2. BACKGROUND

We assume the reader’s familiarity with Bayesian net-
works (BN); see [21, 19, 17] for an introduction to causal-
ity and Bayesian networks. Semi-Markov causal mod-
els (SMCM) [22] (also known as acyclic directed mixed
graphs (ADMG)) are generalizations of causal BNs that rep-
resent the presence of latent confounders. An SMCM rep-
resents both (in)dependence relations as well as causal rela-
tions among variables. The structure of SMCMs is a graph
G = (V,E), where V is a set of nodes and E a set of edges.
Nodes represent variables, whereas edges represent relations
between variables. SMCMSs may contain both, directed (—)
and bi-directed (<+») edges. A directed edge X — Y denotes
that X is a direct cause of Y in the context of the mea-
sured variables, while a bi-directed edge X <> Y denotes
that X and Y share a latent common cause. SMCMs rep-
resent the causal and probabilistic properties of marginals
of BNs. There may be at most one edge of each type (di-
rected or bi-directed) between two nodes. The graph G of
a SMCM is acyclic, that is, there is no directed cycle in it
so that causal feedback is excluded. A node X is a parent
(ancestor) of Y, and Y is a child (descendant) of X, if
X — Y (adirected path from X to Y, denoted as X --»Y)
is in G. An edge between X and Y is into Y, if X — Y or
X < Y, and is out of Y otherwise (X < Y). Similarly,
a (not necessarily directed) path between X and Y is into
Y if the previous node on the path is into Y, and out of Y
otherwise. A triplet (X,Y, W) of nodes is called a collider
in G if both X and W are into Y.

Selection bias [6, 2] arises if the samples are not uni-
formly randomly selected from a population but their inclu-
sion in the dataset depends on one or more variables, e.g.
in case a business mostly has clients from a specific region.
Selecting a sample for inclusion in the data can be mod-
eled as a dummy binary variable N. All samples are thus
conditioned on the fact that N = 1: selection bias is equiv-
alent to conditioning. If N is causally affected by observed
variables X — N < Y then X and Y will be found depen-
dent in the sample. Thus, selection bias introduces spurious
dependencies among variables not present in the full popula-
tion. Selection bias cannot be ignored in a practical business
application; one needs to model it during causal discovery.
ETIO admits the possibility that some observed variables
S may be causing selection N. We assume that selection
in the sample does not causally affect any other observed
variable, e.g., the fact that a client has been included in our
database does not affect any other of their attributes. In
addition, we assume that selection is not caused by latent
confounders (e.g. X <~ L — N <+ Y is not permitted); this
complicates modeling selection and is left for future work.
ETIO does not directly need to model the dummy variable
N; what is important to reason with are the variables that
causally affect N. The following concept definition of m-
separation, here generalized to include selection, is funda-
mental in causal modeling:



Algorithm 1 Bayes-Ball for SMCMs with selection

Input: SMCM G, Node X, Conditioning Nodes Z
Output: Nodes Y m-connected to X given Z

1: Visit X from node X {Case 0}

2:

3: When visiting a node Y from node W:

4: if W=Y or (W<« Y and Y ¢ Z) then {Case 1}
5 VisitUifY 2 UorY <« UorY < UorY,U€eS
6: end if

7. if (W—=YorW+<Y)and Y € Z then{Case 2}
8 VisitUifY«+UorY < U

9: end if

10: if (W =Y or W« Y) and Y ¢ Z then {Case 3}
11: Vist UifY - UorY,U €8S

12: end if

Definition 1. In a SMCM G with causes of selection in
the set S (possibly empty), a path p in G between nodes X
and Y is m-connecting relative to (condition to) a set of
nodes Zs = ZU S, (X,Y & Zg), if: (a) every non-collider
on p is not a member of Zg, and (b) every collider on p is
a member of Zg, or an ancestor of some member of Zg. X
and Y are said to be m-separated by Zgs if there is no m-
connecting path between them relative to Zg. Otherwise,
X and Y are m-connected by Zs.

The major assumption of the prototypical algorithms for
causal discovery [21] is that X and Y are independent con-
ditioned on Z and selection S if and only if X and Y are
m-separated by Zs. The “if” part is called the Causal
Markov Condition and the “only if” part the Faithful-
ness Condition [21]. Intuitively, both conditions together
imply that (in)dependencies appear only due to the causal
structure and the selection process, not due to the exact pa-
rameterization of the distribution. In(dependencies) are de-
termined by performing an appropriate conditional indepen-
dence test on the data. ETIO employs Bayesian tests that
return the probability that a given conditional dependence
holds in the data. The main principle in the logic-based
approach to causal discovery is that results of the tests of
independence correspond to m-connection or m-separation
constraints that should hold in the unknown causal graph,
after accounting for selection and interventions (discussed
below). For example, if a given independence is more prob-
able than the corresponding dependence, an m-separation
constraint is imposed. ETIO imposes the constraints that
correspond to test results, in order of probability, while re-
moving conflicting test results.

Interventions (a.k.a. manipulations, perturbations) mod-
ify the structure of the causal graph and change the data
distribution, thus requiring special treatment and modeling.
Reviews of various types of interventions, as well as discus-
sions on their implications in causal discovery can be found
in [15, 9]. The type of interventions we focus on are de-
scribed following [9]. Such interventions may be modeled by
including an additional indicator variable I for each differ-
ent intervention with directed edges into the manipulated
variables, taking values 1 in the samples where the specific
intervention was present and 0 otherwise. Structural in-
terventions (also known as hard interventions) are inter-
ventions that completely cut-off the influence of other causes
on the manipulated variable (target), that is, they remove

all edges into the target. For example, forcing all drivers
to install an anti-lock breaking system (ABS) removes all
its influences completely. Parametric interventions (also
known as soft interventions) on the other hand affect the
distribution of the target variable, but do not remove the
influence of other variables and the corresponding edges.
For example, a promotion to install an ABS increases the
probability of installation, but does not eliminate all other
causes. An intervention is confounding if it affects multiple
target variables simultaneously. Naturally, an experimental
dataset may stem from different combinations of interven-
tions. Hereafter, we assume that probability distributions
resulting from interventions remain faithful to the underly-
ing, possibly manipulated, causal structure [10]. In addition,
we assume that interventions are exogenous, that is, they
are not causally affected by and are not confounded with the
modeled variables.

For structural interventions incoming and bidirectional
edges of the targets are removed in the graph that mod-
els the data where I = 1; for parametric interventions these
edges are not removed. In each case, an additional edge is
included from I to each target variable (in a structural in-
tervention this is actually not necessary). An intervention
is uncertain if its targets are not exactly known. For un-
certain interventions ETIO will have to figure out from the
data the possible targets; for certain interventions, the cor-
responding manipulation edge removals and additions can
be imposed as facts. Finally, we say that an intervention is
possibly ineffective if it is not known whether it is para-
metric or structural (see [9] for a discussion). ETIO can
handle possibly ineffective interventions too.

3. M-SEPARATIONS IN SMCMS

The Bayes-Ball algorithm [20] (shown in Algorithm 1 and
adapted to fit our notation) identifies all nodes Y m-connect-
ed with one or multiple nodes X given a set Z in a Bayesian
network (or DAG). Here it is extended to handle SMCMs
with selection. In later sections, the algorithm is represented
in logic so that m-connection constraints can be imposed to
a logic solver. The Bayes-Ball algorithm leads to an efficient
encoding and is the reason behind the improved computa-
tional performance of ETIO, as shown in Section 7.

The algorithm starts from nodes X and visits other nodes
according to the definition of m-connection so that it only
visits m-connected nodes. The set S contains all nodes
which directly (in the context of modeled variables) affect se-
lection. It is easy to see that the extended algorithm shown
in Algorithm 1 is correct according to the definition of m-
connection; a proof sketch follows. For latent variables, it
suffices to see that each bi-directed edge between two nodes
Y and U corresponds to a parent Lyy of them. Visiting U
from Y through a bi-directed edge (cases 1 and 2) is equiv-
alent to two steps in the search in the original algorithm:
first, Lyy is visited as a parent of Y (cases 1 or 2) and then,
U is visited as a child of Lyy (case 1). Cases 2 and 3 are
trivially applicable when W < Y, by substituting it with
W « Lwy — Y, which matches with the preconditions of
cases 2 and 3. The naive approach to handle selection is
to include an additional node N in G and in the condition-
ing set Z. An alternative way is to mark each node as to
whether it affects selection or not, and to extend cases 1 and
3 of the algorithm. This can be done by allowing the algo-
rithm in both cases to visit Y and U if both are selected; no



Table 1: Logic variables in the encoding and their semantics

X =Y
XY
X --»Y X is an ancestor of Y

X has an arrow into Y

X and Y are confounded

XZ,.I.)Y mconn(X,Y,Z) in dataset D

X-->Y mconn(X,Y,Z) in dataset D (path into Y)
XZ;Y mconn(X,Y,Z) in dataset D (path out of Y)
Xf; X is used for selection in dataset D

XL X is manipulated (hard) in dataset D

matter the incoming edge from W, Y and U are trivially m-
connected through N, as N is conditioned on, as long as Y is
not in Z. Finally, since U — N, the resulting m-connecting
path is out of U. One important thing to note is that Y and
U are not necessarily distinct nodes, otherwise cases such as
X — Y <« W would not be handled correctly if Y is in S.

4. THE BASIC ETIO ALGORITHM

A solution to a causal discovery problem is a causal graph
that implies the same conditional (in)dependencies as found
in the data, also called as a graph that fits the data. Typ-
ical causal discovery algorithms return either an arbitrary
solution or another type of graph representing the equiva-
lence class of solutions (called essential graph or PDAG for
Bayesian networks). In the type of problems handled by
ETIO, the set of equivalent solutions cannot be represented
by a graph and their number can grow exponentially; com-
plete enumeration of solutions is impractical. ETIO instead
follows what is called the query-based approach, where
the user queries the algorithm about some causal struc-
tural features of interest. For example, the user may query
whether X causes Y in all solutions and thus necessarily en-
tailed by the data (m-connections and m-separations) and
the assumptions. ETIO is able to reason using a possibly in-
complete set of dependence, independence and prior knowl-
edge constraints, which is not possible using classical causal
discovery algorithms. Thus, ETIO can handle missing-by-
design data or ignore statistical test results that are deemed
unreliable. We proceed by providing a high-level overview
of the ETIO algorithm; implementation details, as well as
the specific instantiation decisions we used are described in
Section 4.2.

The input to the ETIO algorithm are: (a) a set of datasets
D, (b) meta-information about the datasets MI, such as
whether selection bias may be present, if they are observa-
tional or inverventional data, and if so, which are the known
(if any) intervention targets and what type of interventions
were performed, (c) a set of structural prior knowledge con-
straints PK, and (d) query features Q of the causal struc-
ture that should be output (for example, directed edges and
ancestral relations). The implementation of the algorithm
also accepts parameters that dictate whether to admit la-
tent variables and/or selection bias or not, not shown here
for brevity; by default, we assume both are possible. ETIO
first performs conditional independence tests on the data
and represents the results in logic; it also represents known
facts about selection and targets of interventions. It then se-
lects a consistent subset of dependence and prior knowledge

Algorithm 2 Basic ETIO Algorithm
Input: Datasets D, Meta-Information MI, Prior Knowl-
edge PK, Queries Q
Output: Query Results

1: constraints < createConstraints(D, MI, PK)

2: constraints < resolveConflicts(constraints)

3: results <— makelnferences(constraints, Q)

constraints (in case there are conflicts) and finally it identi-
fies invariant features implied by the input constraints. The
procedure is summarized in Algorithm 2.

4.1 Imposing and Encoding Constraints

In this section we show how to encode dependence, inde-
pendence and various kinds of prior knowledge constraints
in first-order logic. We proceed by defining the primitive
logic variables used in our encoding. For clarity, we will call
variable a binary variable in the logic problem and node a
random variable of our data distribution that appears in the
unknown causal graph. Instead of using a predicate notation
such as DirectedEdge(X, Y) we use the notation X — Y as
more convenient.

We are seeking the structure of a causal graph with nodes
as many random variables appear in the union of the datasets
as well as dummy variables Ip indicating the presence of a
possible intervention in a dataset D. For each pair of nodes
X and Y, we introduce a primitive variable for the presence
or absence of a directed edge X — Y, and one for the bi-
directed edge X < Y. After imposing logical constraints,
the truth assignment of these variables will correspond to
an SMCM that fits all datasets after accounting for inter-
ventions and selection. We also define the auxiliary variable
X --+ Y to denote the presence or absence of a directed
path from X to Y.

A second set of primitive variables denoted as X é'bY de-

notes the presence or absence of the m-connection of X with
Y in dataset D given subset Z. It is important to notice
that different m-connections may hold after accounting for
the interventions or selections in different datasets, thus the
dataset parameter is necessary. There is one such variable
for each pair X and Y of nodes, each input dataset, and each
conditioning set Z that appears in any conditional indepen-
dence test performed by the algorithm. The algorithm deter-
mines and imposes the truth value of the Xé'by variables

by performing conditional independence tests on the avail-
able datasets. Not all possible tests need to be performed or
considered, as is the case for example when blocks of data
are missing. Section 4.2 explains the details of the strategy
for performing tests.

We distinguish between two different types of m-connecting
paths: two variables X and Y may be m-connected by a
path that is either into Y or out of Y, denoted respectively
by the auxiliary variables X " L>)Y and X -Z- BY' The distinc-

tion is made to implicitly keep track of the edge that led to
an m-connecting path from X to Y (that is, it is equivalent
to recording the previous node W of the Bayes-Ball algo-
rithm). As we will see below, those constraints are used to
incrementally encode m-connecting paths.

A third set of primitive variables denoted by X7 and XF,
represent the fact whether node X is causing selection in



Table 2: Inference rules

XY & XY V(X ->UAU->Y) @)
Y - X <X --»Y (2)
Xé,'fgy o X >Y\/XZDY (3)
XU e (X UANXEZ) (4a)
v (X-Z-’BY/\UHY/\YgZ/\—'Yé) (4b)
v (X-ZVBYAU%Y/\YEZ/\—\YB) (4c)
VX Y AYEANURAY €27 (4d)
v X.Z.;YAYg/\UgAYgzZ (4e)
XZ,EU ©(X..7Y/\Y—>U/\Y§ZZ/\ﬁU{3) (5a)
V(X >Y/\Y—>U/\Y§_1Z/\ﬁYI A =UL) (5b)
v o(X —Y/\Y(—)U/\YQZ/\—'UI) (5¢)
v (X >Y/\Y<—>U/\Y6Z/\—\YI A =UE) (5d)

D or is the target of a hard intervention in D respectively.
There are X5 and XL variables for each node X that ap-
pears in any input dataset, and each dataset D. If in a
dataset D a hard intervention has occurred with a known
target X, then X1 can be set to true. If it is set to false,
then the algorithm assumes that X is not a hard target of
I in D. If it is not set, the algorithm will try to infer the
value of XL from the rest of constraints, if possible. Simi-
larly, for causes of selection, X3 can be set to true or false if
it is a known fact, or be left unknown to be determined by
the algorithm. Obviously, the more information is known
regarding the targets of interventions and causes of selec-
tion, the more inferences can be made by the algorithm. All
variables defined and their semantics are shown in Table 1.

Having defined the variables, we now present the inference
rules that constrain their truth values and ensure their se-
mantics are respected. The complete list of inference rules,
including selection and interventions, is shown in Table 2.
For the sake of simplicity we omit the existential quantifier
3; for example, the right part of rule 1 should normally we
written as X - Y V (33U X --» U AU --» Y ). For the
moment, we ignore interventions and prior knowledge con-
strains that are dealt with in subsequent subsections.

Rule 1 is used to define ancestral relations, while rule 2
enforces acyclicity. The remaining rules directly encode the
Bayes-Ball algorithm in first-order logic. Rule 3 encodes
that an m-connecting path between two variables X and Y
relative to a separating set and dataset must be either into
or out of Y. Rule 4a corresponds to case 0 in the Bayes-
Ball algorithm, that is, that each variable is m-connected
to itself. Rules 4b, 4d, 5a and 5c¢ correspond to case 1 in
Bayes-Ball: the right-hand side of those rules requires that
there is an m-connecting path between X and Y that is out
of Y, and that Y is not in the separating set. Similarly, rules
4c and 5d match case 2, while rules 4e and 5b match case
3 of the Bayes-Ball algorithm. Note that all rules except
2 are bidirectional which is necessary to be able to make
useful inferences; implicitly this stems from the Faithfulness
Condition which translates to the fact that if m-connection
holds a dependence is implied.

Encoding Interventions. We consider various different
cases of both, structural and parametric interventions. Specif-

ically we assume that the interventions are exogenous, non-
confounding (also called independent) and not uncertain,
but allow for possibly ineffective interventions. Under those
assumptions we can handle: (a) single or multiple indepen-
dent structural interventions, and (b) single or multiple inde-
pendent parametric interventions. In principle the proposed
encoding can also be extended to handle confounding, uncer-
tain and non-exogenous interventions, but we did not further
investigate those cases in this work.

In order to encode structural interventions it suffices to
label the nodes as intervened or not intervened; we use vari-
ables X1, to encode whether or not X has been intervened
in dataset D. For possibly ineffective interventions one can
simply omit assigning a truth value to the respective vari-
able. Recall that, in case of structural interventions all in-
coming edges at the target variable are eliminated and thus
not observed in the data. Thus, it suffices to forbid certain
m-connecting paths stemming from such constraints. Specif-
ically, whenever an inference rule in groups 4 and 5 requires
that there is an edge into a variable Y, we must ensure that
Y is not manipulated; if Y is manipulated, the manipulated
graph would not contain any edges into Y, and thus no such
m-connection would be observed.

Parametric interventions, as already mentioned, can be
encoded by including an additional indicator variable for
each target variable. This variable can only have an edge
into its respective target variable. In case it is possibly inef-
fective, the value of the edge variable can be set to unknown.
Finally, note that when including data from parametric in-
terventions, the data have to contain at least two values for
the indicator variable, in order to be able to perform con-
ditional independence tests. No further special treatment is
needed, at least not for the cases we consider.
Incorporating Causal Prior Knowledge. Prior knowl-
edge has several advantages: (i) it can reduce the number
of errors in the output, as it helps in filtering out incon-
sistent input, (ii) it can increase the number of inferences
made by the algorithm, and (iii) it may also decrease the
total running time of the algorithm. ETIO accepts struc-
tural prior knowledge as in [4], i.e., knowledge about the
causal structure in the form of hard constraints: structures
not consistent with it are eliminated from the solution set.
Interested readers on methods for structure learning with
prior knowledge may refer to [1].

In principle, all kinds of structural prior knowledge can
be incorporated, as long as it can be expressed in first-order
logic. Examples of common types of structural prior knowl-
edge are: (a) presence/absence of direct causal edges, (b)
presence/absence of direct connections (causal edges and/or
latent variables), (c) presence/absence of possibly indirect
causal relations (that is, ancestral relations), (d) (condi-
tional) dependence and independence constraints, (e) root
or leaf nodes, that is, no incoming or outgoing edges respec-
tively, (f) limits on the in/out-degree of nodes, (g) complete
or partial order of variables. All of those can be easily en-
coded using the primitive propositions (logic variables) de-
fined in Table 1. Note that, all of those constraints have
already appeared in the literature [18, 7, 4]. However, none
of the previous approaches is general enough to handle both
SMCMs and such a variety of structural prior knowledge.
Correctness. A full proof of correctness and completeness
is omitted due to lack of space. A proof sketch would fol-
low the one-to-one correspondence with the Bayes-Ball algo-



rithm to prove that all conditional (in)dependencies found
in the data are imposed as m-connections or m-separations
in the logical representation, in a way that every truth as-
signment to the variables corresponds to a causal graph that
entails the same m-connections. The algorithm is query-
complete in the sense that it will output true for all queries
(e.g., presence of a given edge) that are entailed by the data
and the assumptions.

4.2 Implementation Details and Decisions

Performing Conditional Independence Tests. In step
1, the ETIO algorithm performs several conditional indepen-
dence tests on each input dataset D. Typical non-Bayesian
tests are the G? for nominal nodes and the Fisher z-test for
continuous nodes (a.k.a. partial correlation test). One could
perform all possible conditional independence tests. This is
feasible for small datasets of around 10 variables, as in most
of our experiments. It may however be undesirable since
conditioning on too many variables reduces the statistical
power of the test, as well as increasing the number of con-
straints to consider. For larger datasets, one can perform as
many tests as possible, e.g., considering all possible condi-
tioning sets up to k variables. For sparse networks a value of
k = 5 should suffice. For even larger datasets, one could fo-
cus on a set of nodes of interests and retrieve their Markov
Blankets in a recursive fashion [26]; we intend to explore
this direction in future work. Other strategies for selecting
which tests to perform and focus on are possible and an in-
teresting direction to explore to scale the algorithms. ETIO
performs non-Bayesian tests that return p-values of the null
hypothesis of conditional independence. It then employs an
empirical-Bayesian method introduced in [24] (called MPR)
to convert p-values of dependencies and independencies into
probabilities. This allows ETIO to rank constraints to sat-
isfy, in case there are conflicts. Alternative Bayesian meth-
ods have been proposed in [16, 5]; the former is implemented
and explored in our experiments. However, the method in
[24] has very low computational overhead and is suggested
for large problems.

Conflict Resolution Strategy. In order to resolve con-
flicts, a consistent subset of all input constraints has to be
selected. Hyttinen et al. [13] use the method described
in [16] to compute the probability of dependence or inde-
pendence. Their method then tries to identify a subset of
constraints that maximizes the product of the weights of
all satisfied constraints. Although this has the advantage
that it maximizes a well-defined objective function, it comes
at a high computational cost. Instead, we chose a greedy
approach, following [24]. The constraints are ranked in or-
der of confidence (i.e., the maximum of the probability of
dependence or independence), and are considered in that
order. If including a constraint leads to an inconsistency it
is discarded, and is included in the reasoner otherwise.
Performing Inferences. In this paper we employ answer
set programming (ASP) for conflict resolution, as well as for
performing inferences. ASP is a declarative programming
language, which is especially suited for computationally hard
problems. Due to its declarative nature, it is well suited for
encoding complicated problems. Answer set solvers usually
consist of two phases: in the first phase, the input program
is grounded!, and subsequently solved, often using a SAT
solver. As an answer set solver we chose Clingo [11] (ver-

IFor example, in our case the first-order logic rules would be

sion 4.5.4). Clingo supports multi-shot solving [12], which
allows incremental grounding and solving. This is especially
useful for performing the greedy conflict resolution we use.
Without multi-shot solving capabilities, the whole ground-
ing and solving process would have to be repeated for each
constraint checked during conflict resolution, increasing the
computational cost dramatically. Finally, in order to iden-
tify all invariant features based on the input queries, Clingo
can be run in enumeration mode, which identifies the in-
tersection of all possible solutions. Alternatively, for each
desired output feature f, one can query the solver and ask
whether f and —f can be satisfied; if one is not satisfiable,
then its negation holds. This leads to a linear number of
additional solver queries for each input query. A better ap-
proach is to also keep track of all encountered solutions and
avoid repeating solver queries if some literal has already been
encountered in some solution. We plan to further investigate
this direction in the future.

S. RELATED WORK

We review related constraint-based methods for causal
discovery. Methods such as the PC and FCI algorithms
[21, 28] learn an equivalence class of BNs and maximal an-
cestral graphs (an extension of BNs also admitting latent
variables and selection bias; see [24] for its connection to
SMCMs) respectively from a single dataset by performing
a series of conditional independence tests. Recently, there
has been some work on handling more general cases, such
as multiple datasets with missing-by-design values, observa-
tional and interventional data. A recent overview of such
methods can be found in [23]. Apart from methods that
try to identify a complete causal model, there also exist
some query-based methods that only identify features of the
causal model [25, 14, 24]. However, there does not exist any
method that is able to handle all possible cases we consider.

The methods closest to our approach are the methods by
Hyttinen et al. [14] (HHEJ2013 hereafter), Hyttinen et al.
[13] (HEJ2014 hereafter), and COmbINE [24] following the
logic-based approach to causal discovery. HHEJ2013 does
not perform any conflict resolution and thus cannot be ap-
plied in practice since statistical tests almost always contain
some conflicts. COmbINE does not handle selection, prior
knowledge, or soft interventions, but has introduced sev-
eral key ideas and is the precursor to ETIO. Unlike ETIO,
HEJ2014 is able to also handle cyclic linear models. It uses
a Bayesian method [16] to compute the probability of depen-
dence or independence, and then tries to find a causal graph
that maximizes the product of probabilities of all satisfied
constraints which has a high computational cost. There
are two major differences with ETTO: the conflict resolution
strategy and the way constraints are encoded in logic.

6. A USE CASE EXAMPLE

In this section we will present a possible scenario for us-
ing ETIO for causal discovery for a car insurance company.
The scenario introduces and demonstrates in sequence the
features of the algorithm, the range of scenarios it can han-
dle, and the type of inferences it makes. In all cases ETIO
was executed with an oracle for the (in)dependence condi-
tional tests.

transformed to propositional logic rules, depending on the
number of input variables, datasets and conditioning sets.
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Figure 1: A part of the insurance network [3].

()

Grey nodes represent unobserved variables, dashed edges represent possibly

indirect causal relations, while direct edges correspond to direct causal relations. Three different cases are considered: (a)
observational dataset, (b) observational dataset selected based on Antilock, and (c) interventional dataset where a soft

intervention has been performed on Cushioning. (d) Inferences made by only using data from network (a).

(e) Inferences

made by using data from network (a), as well as prior knowledge that Age is a root node, MedicalCost, LiabilityCost and
PropertyCost are leaf nodes and are causally affected by SeniorTrain. (f) Inferences made by using all networks, as well the

prior knowledge.

The insurance network: We assume a true causal model
in the form of a Bayesian network that generates the data.
The true network is of course unknown to the algorithm.
We employ a simplified version of the insurance network
[3] that was created by a human expert in the field. The
ground-truth network is shown in Figure 1 (a). The nodes
correspond to attributes of the customers, their cars, as well
as well as how much each customer may cost the company,
measured by the medical, liability and property cost in case
of an accident. Companies that collect related data have the
goal of identifying causal factors of the cost nodes, in order
to reduce cost. An example of such a factor is whether
or not a car has an airbag (Airbag node) which causally
affects MedicalCost. Knowing this, the company may either
increase the price for customers that do not have an airbag
installed, or may try to persuade customers to install an
airbag by promising a reduced price.

Latent variables: Let us assume that a company measures
most of the nodes in Figure 1 (a) for each client in their data.
Unfortunately, most likely some of the latent confounders
are bound not to be measured. In this case, whether or not
a driver will have an accident while being a customer (the
Accident node) cannot be measured as it is not known in ad-
vance. Other nodes may be omitted from measuring because
they did not seem as important at the time of designing the
database. In Figure 1 (a) we will assume that Ruggedness
and Accident are latent shown in a light font. Because these
nodes are common causes of two or more measured nodes,
they are latent confounders: Bayesian network algorithms

will induce the wrong causal relations. In Figure 1, since
Ruggedness has not been measured and affects both Cush-
ioning and PropertyCost, a dependence is observed between
Cushioning and PropertyCost. Such a dependence cannot be
broken by conditioning on any set of the measured variables.
Thus, any Bayesian network algorithm will (asymptotically)
identify the edge Cushioning — PropertyCost or Cushion-
ing < PropertyCost. The direction of the edge will be arbi-
trary. However, as there is no causal relation between them,
the edge, if causally interpreted, would lead to wrong conclu-
sions: improving the cushioning of the car will not affect the
property cost in case of an accident; the reverse edge direc-
tion makes even less sense. Therefore, if latent confounders
are possible, one should use algorithms for learning mod-
els that admit them, such as the FCI [21, 28] algorithm for
learning maximal ancestral graphs. Figure 1 (d) shows the
direct and indirect causal relations any sound and complete
procedure such as ETIO would identify, denoted with solid
and dashed edges respectively. Indeed, ETTIO does not output
any causal relation between Cushioning and PropertyCost.
However, ETIO is not able to identify any causal relation
as direct (not possibly mediated by any other variable). We
remind the reader that the figures with ETIO results (i.e.,
subfigures (d) - (f)) only show the causal relations ETIO is
able to prove: missing edges do not imply that they are not
possible.

Incorporating prior knowledge: For some variables it is
safe to make certain assumptions based on their semantics.
It is reasonable to assume that Age is a root node, and is not



caused nor confounded with any of the measured variables.
Furthermore, we can also assume that the cost variables
are leaf nodes as they appear after an accident and record-
ing of all other nodes. Finally, we assume that SeniorTrain
causally influences all costs, possibly indirectly. There may
be additional such cases, but for the sake of demonstration
we only consider the ones above. Figure 1 (e) shows the
inferences made by ETIO when these pieces of causal prior
knowledge are included. We can see that, using prior knowl-
edge increases the amount of inferences made, while also
refining them. For instance, note that without using the
prior knowledge (see Figure 1 (d)) it was inferred that Age
is a causal factor of PropertyCost, but after including prior
knowledge it is inferred that Age only indirectly affects it
through SeniorTrain, MakeModel and Vehicle Year.
Including data with selection and overlapping node
sets: Assume that there has been a retrospective study on
antilock systems and how they affect accident rates; the
measured node subset is shown in Figure 1 (b). In this
study, the samples were selected such that the proportion of
different types of antilock systems is equal: for a number of
cars with antilock system, an equal number was selected for
inclusion in the study. Thus, sample selection is affected by
the Antilock variable. Such data are called case-control
data, a type of selected data. Because of selection bias
the dataset has a different distribution than the one con-
tained in the company’s database. In addition, notice that
this study measures a different (overlapping) set of nodes as
the ones available to the insurance company; this is a case
of data with missing-by-design values. Because of selection
and missing values the pooled data cannot be analyzed using
Bayesian network learning methods, even if there were no la-
tent confounders. Due to selection bias in the data, spurious
dependencies appear. For example, MakeModel would seem
to be dependent with VehicleYear, yet there is no direct
or indirect causal relation between them. FCI could han-
dle selection bias in a single dataset but not in combination
with missing-by-design values and prior knowledge. ETIO
will analyze the original and the second available datasets
together with the following interventional dataset.
Including interventional data: As a final example, con-
sider the case were the company wants to reduce the medical
cost of some of its clients. They decided to run a campaign
that promotes the usage of cushioning. Since not all clients
will respond to the campaign, this intervention is a soft in-
tervention. On the network this is modeled as an additional
indicator variable I_Cushioning that has an edge into Cush-
toning (see Figure 1 (c)). After the campaign, the company
continues to gather additional data which can then be em-
ployed in combination with the previous two datasets and
available prior knowledge. The results of the analysis on the
three datasets by ETIO that include observational, selected,
and interventional data measuring different node sets and
including prior knowledge are shown in Figure 1 (f). Note
that, including additional data further refines the inferences
made compared to Figure 1 (e). For example, the previ-
ously inferred causal relations between Age and SeniorTrain,
MakeModel and VehicleYear are now found to be direct (in
the context of the measured variables), denoted with solid
lines. Furthermore, the algorithm also makes the non-trivial
inference that Age is a direct cause of MedicalCost.
Although not shown in the figures, the algorithm is also
able to make several non-trivial inferences between variables

that were never measured together in any of the datasets:
(a) Ruggedness is not directly connected (no direct causal
relation and not confounded) with neither of CarValue, Med-
icalCost and LiabilityCost, (b) Ruggedness does not causally
influence CarValue and LiabilityCost and is not causally af-
fected by LiabilityCost, and (c) Accident and Carvalue are
not causally related.

7. EXPERIMENTAL EVALUATION

We evaluated ETIO and compared it with HEJ2014 [13]
and FCI [28] on simulated data.

Data Generation: We generated acyclic networks with
latent confounders. Direct edges and confounders were in-
cluded in the network independently with probabilities Py
and P. respectively. We used a linear parameterization
and coefficients were sampled uniformly at random from the
range £[0.2, 0.8], following [13]; that is, each node is a linear
function of its parents plus an error term, all having param-
eters in the aforementioned range. We performed two sets
of simulations: in the first simulation we generated 100 net-
works with 6 nodes, P; = 0.2 and P. = 0.1, and generated
one dataset with 500 samples from each network. Similarly,
in the second simulation we generated 100 networks with
8 nodes, P; = 0.15 and P. = 0.05, and generated three
datasets from each network, with sample sizes of 100, 500
and 1000. In order to compare all algorithms we used only
a single observational dataset.

Algorithms: We used the implementation of HEJ2014
by Hyttinen et al. [13]. For ETTIO we used both the MPR
[24] and Bayesian method [16] used by HEJ2014 to rank
constraints. The Bayesian method accepts a prior p, which
measures the prior probability of independence. We used the
values {0.1,0.2,...,0.8,0.9} for p. For both, HEJ2014 and
ETIO we ran all possible conditional independence tests.
We implemented the complete version of FCI [28] without
orientation rules for selection. FCI uses a threshold a on
the p-value of an independence test to decide dependence
or independence. For a we used the values {0.001, 0.003,
0.005, 0.007, 0.01, 0.03, 0.05, 0.07, 0.1}. As a conditional
independence test we used the partial correlation test. As
an answer set solver we used Clingo [11] (version 4.5.4) for
both HEJ2014 and ETIO. Finally, we set a time limit of 20
minutes for each problem instance.

Comparison: To compare the learning accuracy of all al-
gorithms, we followed Hyttinen et al. [13] and compared all
dependencies and independencies represented by the output
of HEJ2014, ETIO and FCI. The dependencies and inde-
pendencies can be read-off the output of HEJ2014 (a SMCM
for acyclic graphs with latent variables) and FCI using the
Bayes-Ball algorithm. ETIO does not output a causal graph
by default, but given the right set of queries a SMCM can
be returned, at least in this case where all conditional in-
dependence tests are performed. As performance measures
we used the true positive rate (TPR) and false positive rate
(FPR), using dependencies as positives. Furthermore, we
measured the running time of Clingo for HEJ2014 and ETIO
only, in order to compare the efficiency of the different en-
codings and conflict resolution strategies. The running time
of FCI was not measured, as FCI is much faster than both
logic-based algorithms, especially for larger networks.

Solving Time: Figure 2 (a) shows the solving time for
HEJ2014 and ETIO on 100 datasets with 500 samples from
100 networks with 6 nodes. The x-axis shows the percentage
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Figure 2: (a,b) Solving time of HEJ2014 and ETIO. The x-axis shows the percentage of instances solved in time less than the
respective value on the y-axis each. ETIO outperforms HEJ2014 on data with 6 variables. HEJ2014 did not run on data with
8 variables for the time limit of 20 minutes. (c,d) TPR and FPR of FCI, HEJ2014 and ETIO. FCI and ETIO outperform
HEJ2014. FCI and ETIO perform similarly, but ETIO does not have any hyperparameter to tune, in contrast to FCI.

of solved instances, sorted by time in ascending order, while
the y-axis shows the running time in seconds. This means
that for a specific value X on the x-axis, X % of the instances
have been solved each in time less than or equal to the cor-
responding value on the y-axis. For example, in Figure 2 (a)
around 90 % of all instances have been solved by HEJ2014
in less than 10 seconds each. We see that ETIO takes about
the same time (2-3 seconds) for all instances, regardless of
the weighting scheme used. HEJ2014 on the other hand, al-
though slightly faster for some instances, takes much longer
for the harder instances. This shows that the encoding and
conflict resolution strategy of ETIO are more efficient than
the one of HEJ2014.

Figure 2 (b) only shows the running time of ETIO on
300 datasets, 100 for each sample size (100, 500 and 1000),
generated from 100 networks with 8 nodes. HEJ2014 was
not run on those data as it took too long to complete. We see
that the running times are very similar across sample sizes,
although there are a few cases with 500 and 1000 samples
that ran slower. This can be attributed to the fact that more
samples lead to lower p-values (that is, more dependencies),
which may slow down the algorithm. In general, the more
independencies are identified the faster ETIO runs.

Quality of Results: Figures 2 (¢) and (d) show the TPR
and FPR for different parameter values (prior and thresh-
old). Although not shown in the figures, smaller priors for
the Bayesian scoring method and larger thresholds for FCI
correspond to points with higher TPRs. The results of the
first simulation (Figure 2 (c¢)) show that HEJ2014 outper-
forms ETIO and FCI, at least in this experimental setting.
Specifically, all algorithms give comparable results in terms
of TPR, but HEJ2014 consistently has about 5% less FPR
than both, ETIO and FCI. This difference in performance
between HEJ2014 and ETIO is due to the different conflict
resolution strategy used. Recall that ETIO uses a greedy
strategy, whereas HEJ2014 identifies the optimal subset of
constraints which maximizes the product of weights assigned
to each constraint. ETIO with Bayesian probabilities per-
forms similarly to FCI. Using the MPR method, ETIO achieves
the highest TPR, but the FPR also increases in contrast to
the Bayesian method. In the second simulation (Figure 2
(d)) ETIO perform similarly to FCI in most settings. Note
that, the comparison favors FCI, as multiple thresholds were
used, while ETIO uses the MPR method which does not
have any hyperparameters. In practice it is not known in
advance which is the best threshold. For example, common



thresholds such as 0.01 and 0.05 (the 5th and 7th largest
TPRS in the figures) perform similarly, if not worse, than
ETIO with MPR. Thus, ETIO with MPR performs at least
as well as FCI, without using any hyperparameters.

8. DISCUSSION AND CONCLUSIONS

We propose the ETIO algorithm for causal discovery from
multiple heterogeneous datasets, where latent confounders,
selection bias, or interventions may have occurred. ETIO
can also handle missing-by-design data and incorporate cau-
sal prior knowledge. Compared to the state-of-the-art algo-
rithm that can also handle multiple datasets it is computa-
tional more efficient. ETIO is an instance of the logic-based
approach to integrative causal discovery demonstrating its
potential for applications to business data. It also points to
interesting new directions for future research to increase the
scalability and learning performance of this type of methods.
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