
Learning Cumulatively to Become More Knowledgeable

Geli Fei, Shuai Wang and Bing Liu

Department of Computer Science
University of Illinois at Chicago

Chicago, IL, USA
gfei2@uic.edu, shuaiwanghk@gmail.com, liub@cs.uic.edu

ABSTRACT

In classic supervised learning, a learning algorithm takes a fixed

training data of several classes to build a classifier. In this paper,

we propose to study a new problem, i.e., building a learning

system that learns cumulatively. As time goes by, the system sees

and learns more and more classes of data and becomes more and

more knowledgeable. We believe that this is similar to human

learning. We humans learn continuously, retaining the learned

knowledge, identifying and learning new things, and updating the

existing knowledge with new experiences. Over time, we

cumulate more and more knowledge. A learning system should be

able to do the same. As algorithmic learning matures, it is time to

tackle this cumulative machine learning (or simply cumulative

learning) problem, which is a kind of lifelong machine learning

problem. It presents two major challenges. First, the system must

be able to detect data from unseen classes in the test set. Classic

supervised learning, however, assumes all classes in testing are

known or seen at the training time. Second, the system needs to be

able to selectively update its models whenever a new class of data

arrives without re-training the whole system using the entire past

and present training data. This paper proposes a novel approach

and system to tackle these challenges. Experimental results on two

datasets with learning from 2 classes to up to 100 classes show

that the proposed approach is highly promising in terms of both

classification accuracy and computational efficiency.

Keywords

Cumulative machine learning; lifelong machine learning; unseen

classes; open world classification

1. INTRODUCTION
Supervised learning has been very successful in research and in

applications. However, existing supervised learning research has

focused on developing effective individual statistical algorithms

that learn accurate models or classifiers given a fixed dataset.

Relatively little research has been done on how to build

continuous learning systems that learn cumulatively and become

more and more knowledgeable as the system sees more and more

classes of data over time.

Let us use an example to motivate this research. The 2016

presidential election in the USA has been a hot topic on social

media and many social science researchers rely on the collected

online user discussions to carry out political science research.

During the long campaign, every new proposal made by a

presidential candidate is followed by a huge amount of

discussions on social media. A multiclass classifier is thus needed

to track and to organize the discussions from the general public.

As the campaign goes on, the initially built model or classifier

will inevitably and frequently encounter new topics (e.g. Donald

Trump's plan for immigration reform or Hillary Clinton's new

proposal for tax increase) that have not been covered in previous

learning. In this case, the classifier must first be able to detect

these new topics when they occur rather than classifying them into

some existing classes or topics. Second, after enough training

examples of new/unseen topics are collected by human users, the

existing classifier should incorporate the new classes or topics in

the classification system in a manner that does not require
rebuilding the whole classification system from scratch.

Based on this example, we can see two inter-related challenges in

building a multiclass cumulative supervised learning system: (1)

the ability to continuously detect new/unseen classes of data that

have not been covered in training by the current classification

system, and (2) the ability to cumulatively add new classes to the

system without having to re-train the entire system from scratch

using all the past training data. In this paper, we aim to solve these

two problems in the context of text classification. We call this

cumulative machine learning or simply cumulative learning,

which is a special form of lifelong machine learning [5, 26, 35,
39]. Formally, cumulative learning is stated as follows:

Problem Statement (Cumulative Learning): At any time point t,

the system maintains a classifier, 𝐻𝑡, learned from a set of past

training datasets 𝐷𝑡 = {𝐷1, 𝐷2, … , 𝐷𝑡} labeled with

corresponding classes (labels) 𝑌𝑡 = {𝑙1, 𝑙2, …, 𝑙𝑡}, where every

example in each dataset 𝐷𝑖  𝐷𝑡 is labeled with the same class

𝑙𝑖 𝑌𝑡. 𝐻𝑡 is able to classify each test instance to either one of

the known classes in 𝑌𝑡 or the unknown class 𝑙0 , which

represents all new or unseen topics. In this case, 𝐻𝑡 is said to

perform open world classification. Once enough training data

𝐷𝑡+1 has been collected for an unknown topic/class 𝑙𝑡+1 by the

user, 𝐻𝑡 is updated to cover the new class 𝑙𝑡+1 to produce a

new classifier 𝐻𝑡+1 and 𝐻𝑡+1 is also able to perform open

world classification. We want to build 𝐻𝑡+1 upon 𝐻𝑡 with

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Permissions@acm.org. 

KDD '16, August 13-17, 2016, San Francisco, CA, USA  
© 2016 ACM. ISBN 978-1-4503-4232-2/16/08…$15.00  

DOI: http://dx.doi.org/10.1145/2939672.2939835  minimal efforts and without re-training the entire system.

minimal efforts and without re-training the entire system.

We now explain why our classification is called open world

classification. Classic supervised learning assumes that all the test

classes have been seen in the training phase and each test instance

can only be classified into one of the classes used in training. We

say that it makes the closed world assumption. In contrast to this

closed world assumption, we allow test instances from unknown

classes to appear (not seen during training) and our classifier is

able to detect such unknown/unseen classes of documents, which
is why we call the new paradigm open world classification.

Let us now explain why cumulative learning is a form of lifelong

machine learning, which is defined as follows [9]:

Definition (Lifelong Machine Learning (LML)): At any time t,

the learner has performed a sequence of t learning tasks, 𝑇1 ,

𝑇2, …, 𝑇𝑡 , and has accumulated the knowledge K learned in

these past tasks. At time t+1, it is faced with a new learning

task 𝑇𝑡+1. The learner is able to make use of the past knowledge

K to help perform the new learning task 𝑇𝑡+1.

Cumulative learning is a form of lifelong machine learning

because we can treat task 𝑇𝑡+1 as the task of learning a multi-class

classifier 𝐻𝑡+1 using all the past and the current data, 𝐷1, 𝐷2, …,

𝐷𝑡, 𝐷𝑡+1 labeled with corresponding classes, 𝑙1, 𝑙2, …, 𝑙𝑡, 𝑙𝑡+1, as

well as the past classifier 𝐻𝑡 as the knowledge to help train 𝐻𝑡+1.

Recently, in the field of computer vision researchers studied the

problem of allowing unseen classes of images in the test set,

which they call open set recognition [18, 31, 32]. We choose to

call it open world classification (or simply open classification)

because of the closed world assumption made by classic

supervised learning. A framework is also proposed from the risk

management perspective [31]. Classic learners define and

optimize over the expected empirical risk, which is measured

based on errors made on the training data during learning. For

open world classification or learning, it is crucial to consider how

to extend the model to capture the risk of the unknown by

preventing the model from over-generalizing. In order to tackle

this problem, [31] introduced the concept of open space risk and

formulated an extension of existing one-class and binary SVMs to

address the open world classification problem. However, their

proposed method is weak as the positively labeled open space is

still an infinite area. We have addressed this problem in [14],

which we adopt for this work, and extend it further to cumulative

learning.

Following the formulation of open world learning, we discuss a

solution for detecting new classes of documents by reducing the

open space risk while balancing the empirical risk in learning.

Intuitively, given a target class of documents, the positive open

space for the class is considered to be the space that is sufficiently

far from the center of the target class documents. In the multiclass

classification setting, each of the classes can be regarded as a

target class and should be surrounded by a ball covering the target

class area, while any document falling outside of the balls of all

target classes is considered belonging to unseen/new classes. To

build an open world classifier, a recent learning technique called

center-based similarity space learning (CBS learning), which was

originally proposed by Fei and Liu [13] for solving a negative

covariate shift problem, is employed to give an initial solution to

the proposed open space formulation, which significantly reduces

the open space risk compared to that of [31].

Being able to detect unseen classes/topics is still insufficient for a

multiclass classifier to handle the growing number of topics of

interest. We need to incorporate the detected new classes into the

system with minimal effort. A naive approach to solving this

problem is to re-train the entire system including the new class of

data from scratch. However, such a solution is only feasible if the

number of classes is small. It is inappropriate when the number of

classes grows very large.

In this work, we propose a new learning strategy, which is

inspired by the process of human concept learning, to make an

attempt to tackle the cumulative learning problem. Human beings

are exposed to new concepts all the time. One particular way we

learn a new concept is by searching from the already known

concepts, looking for similar ones, and then trying to find the

difference between these known concepts and the new one

without using all the known concepts. For example, assume we

have already learned concepts like “movie”, “furniture,” and

“soccer”. Now we are presented with the concept of “basketball”

and its documents. We find that “basketball” is similar to

“soccer”, but very different from “movie” and “furniture”. Thus

we just need to accommodate the new concept “basketball” into

our old knowledge base by focusing on distinguishing the

“basketball” and “soccer” concepts. We do not need to worry

about the difference between “basketball” and “movie” or

“furniture”, because the existing perception or concepts of

“movie” and “furniture” can easily tell that documents from

“basketball” do not belong to either of them. Based on the above

possible human learning process, the proposed learning process

adds a new class of documents to the system that only disturbs a

small subset of the past classes.

As we indicated above, cumulative learning is related to lifelong
learning [5, 26, 35, 39] because we aim to perform learning
continuously to make the system more and more knowledgeable,
which is analogous to human learning. However, it is different
from current lifelong machine learning [35] and transfer learning
[25] methods because existing work in these areas mainly focuses
on knowledge transfer, i.e., how to make use of the past data or
knowledge to help new learning tasks. None of the methods is
able to detect unseen classes or incrementally update an existing
classifier, which make cumulative learning require a different type
of algorithms. Our problem is also different from existing research
in online learning and incremental learning [1, 6, 42]. Online
learning aims to handle new instances of the known classes, while
we focus on handling unseen/new classes of documents by
recognizing them and updating the existing classification system.

In summary, this paper makes the following contributions:

1. It proposes the new learning problem of cumulative learning,

which presents a new form of lifelong learning. It involves

two unique challenges, detecting and learning new knowledge

(classes or concepts) over time so that the system becomes

more and more knowledgeable. The first challenge is called

open world classification and the CBS learning framework is

adopted to solve the problem in a similarity space.

2. It proposes a learning strategy for cumulatively adding new

classes of documents into the existing classification system

without requiring re-training the whole system from scratch.

3. Extensive experiments show that the proposed method gives

superior results compared to state-of-the-art baselines in terms

of both classification accuracy and learning efficiency.

2. Related Work
Our work addresses an issue that is related to and has received

attention from various machine learning paradigms such as open

set recognition, lifelong learning, transfer learning, multi-task

learning, and online learning. We compare with them below.

2.1 Open World Classification
Compared to research on multiclass classification with closed

world assumptions, there is relatively less work on open world

classification. In this subsection, we review related work on one-

class classification, SVM decision score calibration, open set

recognition, and others.

One-class classifiers, which only rely on positive training data, are

natural starting solutions to the open world multiclass

classification task. One-class SVM [33] and SVDD [37] are two

representative one-class classifiers. One-class SVM treats the

origin in the feature space as the only member of the negative

class, and maximizes the margin with respect to it. SVDD tries to

place a hypersphere with the minimum radius around almost all

the positive training points. [22] demonstrated that SVDD and

one-class SVM are comparable when the Gaussian kernel is

applied. However, as no negative training data is used, one-class

classifiers have trouble producing good separations, leading to

poor results.

This work is also related to using thresholded probabilities for

rejection. As the decision score produced by SVM is not a

probability distribution, several techniques have been proposed to

convert a raw decision score to calibrated probabilistic outputs [2,

12, 17, 27, 41]. Usually a parametric distribution is assumed for

the underlying distribution, and raw scores are mapped based on

the learned model. A variation of the approach in [27] is the most

widely used probability estimator for SVM score calibration. It

fits a sigmoid function to the SVM scores during training.

Provided with a threshold, a test instance can be rejected if its

highest probability of belonging to any class is lower than the

threshold.

Recently, researchers in computer vision [18, 31, 32] made

attempts to solve open world classification and proposed the

concept of open set recognition for visual learning. [31]

introduced the concept of open space risk, and defined it as a

relative measure. The proposed model reduced the open space risk

by replacing the positively labeled half-space of a binary linear

classifier with a positive region bounded by two parallel

hyperplanes. While the positively labeled region for a target class

is reduced compared to the half-space in the traditional linear

SVM, its open space risk is still infinite. In [18], the authors

proposed to use Extreme Value Theory (EVT) to estimate the

unnormalized posterior probability of inclusion for each class by

fitting a Weibull distribution over the positive class scores from a

pre-trained 1-vs-rest multiclass RBF SVM classifier. [32]

introduced the Compact Abating Probability (CAP) model, which

explained how thresholding the probabilistic output of RBF One-

class SVM manages the open space risk. Using the probability

output from RBF one-class SVM as a conditioner, the authors

combined RBF One-class SVM with a Weibull-calibrated SVM

similar to the one in [18]. For both methods [18, 32], decision

thresholds need to be chosen based on the prior knowledge of the

ratio of unseen classes in testing, which is a weakness of the

methods.

[11] proposed Exploratory Learning in the multiclass semi-

supervised learning (SSL) setting. In this work, an “exploratory”

version of expectation-maximization (EM) is proposed to extend

traditional multiclass SSL methods, which deals with the scenario

when the algorithm is given seeds from only some of the classes

in the data. It automatically explores different numbers of new

classes in the EM iterations. The underlying assumption is that a

new class should be introduced to hold an instance 𝑥 when the

probability of 𝑥 belonging to the existing classes is close to

uniform. This is quite different from our work. First, it works in

the semi-supervised setting and assumes that test data is available

during training. Second, it only focuses on improving accuracy on

the classes with seed examples. Our work in [14] dealt with the

problem using an entirely different approach adopted from [13].

However, these works did not propose or deal with cumulative

learning, which is important for an intelligent system as it allows

the system to learn more and more and become more and more

knowledgeable.

2.2 Lifelong Machine Learning
Our work is related to lifelong machine learning [5, 26, 35, 39]. In

the context of supervised learning, early work on lifelong learning

focused on transferring invariances in neural networks. For

example, memory-based and explanation-based neural networks

(EBNN) based methods were proposed in [38, 39], which

transferred knowledge across multiple learning tasks. Their

learning task was similar to ours, but they mainly focused on

helping the classification of the new class. Also, their methods

were also inefficient. [36] made some improvements in terms of

efficiency to those in [38, 39], but the framework was similar.

[30] proposed the Efficient Lifelong Learning Algorithm (ELLA).

[29] further enhanced ELLA through actively selection of the next

task to learn. However, each of ELLA’s learning task is

independent of others, i.e., each task’s learning and testing are not

related to others. Thus, it solves a different problem. This is also

the case for the lifelong supervised learning in [9]. Clearly, none

of previous works detects new or unseen classes. Our work is

complementary to existing research. Lifelong learning has also

been conducted in reinforcement learning [5], and unsupervised

topic modeling [8, 9], which use the knowledge extracted from

past documents of many domains to improve topic discovery in

future tasks.

2.3 Online and Incremental Learning
Online learning and incremental learning [1, 6, 10, 15, 20, 42]

mainly aim at handling new instances of known classes. In both

scenarios, new data instances belonging to the known classes and

their class labels are incrementally revealed. The goal of online

learning is to make a sequence of accurate predictions in an online

manner given the knowledge of the correct answers to previous

prediction tasks. However, our problem has a different setting, in

which a new class of documents arrives together and online

updating is not required. We also detect new classes and update

the learned classifier without re-training the entire system.

Although [40] allows new classes of data to be incrementally

added, the paper does not detect new/unseen classes, which makes

the system less applicable in real-world applications.

3. Cumulative Learning
This section presents the proposed learning strategy and process

to solve the cumulative learning problem. As discussed in the

introduction section, the proposed learning process is similar to

that of human concept learning. It cumulates knowledge and uses

the cumulated knowledge to help update the existing classification

model and to accommodate the new class, so that the new

classification model can classify both existing classes and the new

class, as well as detecting unseen classes constantly. The proposed

method is based on the 1-vs-rest strategy of SVM. This section

focuses on the overall algorithm and how to incorporate the new

class with minimum effort in training by exploiting the existing

classification model and the past data as the prior knowledge. The

underlying learning method will be discussed in more details in

Section 4.

3.1 Training a Cumulative Classification

Model
We already have an open world classification system at time 𝑡

with its classification model 𝐻𝑡 = {ℎ1, ℎ2, … , ℎ𝑡} built for the past

𝑡 classes 𝑌𝑡 = {𝑙1, 𝑙2, … , 𝑙𝑡} using their corresponding training sets

𝐷𝑡 = {𝐷1, 𝐷2, … , 𝐷𝑡}. At time 𝑡 + 1, the new dataset 𝐷𝑡+1 of class

𝑙𝑡+1 arrives, and the classification model 𝐻𝑡 needs to be updated

or extended to produce a new classification model 𝐻𝑡+1. We note

that each ℎ𝑖 in 𝐻𝑡 or 𝐻𝑡+1 is a 1-vs-rest SVM classifier built using

the CBS learning method in [13] for class 𝑙𝑖 treating 𝑙𝑖 as the

positive class. We will discuss CBS learning in the next section.

Specifically, the learning system goes through the following two

steps to update the current state of the classification system 𝐻𝑡 to

build a new one 𝐻𝑡+1 that can classify test data from all classes in

{𝑙1, 𝑙2, … , 𝑙𝑡, 𝑙𝑡+1} as well as detect unseen classes of documents

denoted by 𝑙0.

1. Searching for a set of similar classes 𝑆𝐶 that are similar to the

new class 𝑙𝑡+1.

2. Learning to separate the new class 𝑙𝑡+1 from the classes in 𝑆𝐶.

In order to perform the first step, we need a way to measure the

similarity between classes. There are many possible ways. One

way is to perform clustering every time when a new class arrives

and see which cluster the new class falls in. However, it is

difficult to set the number of clusters as the number of classes

changes over time. It is also hard to know how the classes in the

same cluster are related in the overall classification problem.

Another way to measure the similarity between classes is by

computing the similarity between the centers of each class of

documents. However, this approach does not know the spread of

each class of documents and again, it is not clear how this

distance is related to the final classification.

In this work, we propose to quantify the similarity between a new

class 𝑙𝑡+1 and the existing ones 𝑙1, 𝑙2, … , 𝑙𝑡 by running each of the

1-vs-rest binary classifiers in 𝐻𝑡 = {ℎ1, ℎ2, … , ℎ𝑡} to classify

instances in 𝐷𝑡+1 . Those past classifiers that accept (classify as

positive) a certain number/percentage 𝜆𝑠𝑖𝑚 of instances from 𝐷𝑡+1

are regarded as similar classes and are denoted by 𝑆𝐶 . This

method is intuitive because if a past classifier ℎ𝑖 classifies many

instances in 𝐷𝑡+1 as positive, it means that the two classes of data

are close to each other and need to be separated subsequently.

Separating the new class 𝑙𝑡+1 and classes in 𝑆𝐶 actually involves

two steps:

1. Building a binary classifier ℎ𝑡+1 for the new class 𝑙𝑡+1. It is

intuitive to build ℎ𝑡+1 for class 𝑙𝑡+1, using 𝐷𝑡+1 as the positive

training data and the data of the classes in 𝑆𝐶 as the negative

training data.

2. Updating the existing classifiers for the classes in 𝑆𝐶 . The

reason for the updating is that the addition of class 𝑙𝑡+1

confuses those classifiers in 𝑆𝐶. To re-build each existing

classifier ℎ𝑖, the system needs to use the original negative data

employed to build the existing classifier ℎ𝑖 and the new data

𝐷𝑡+1 as the new negative training data. We still need the old

negative training data because we want the new classifier still

to be able to separate class 𝑙𝑖 from those old classes.

The detailed algorithm is given in Algorithm 1. Line 1 initializes

𝑆𝐶 to the empty set. Line 3 initializes the variable 𝐶𝑇 (for count)

to record the number of instances in 𝐷𝑡+1 that are classified as

positive by classifier ℎ𝑖. Lines 4-9 use ℎ𝑖 to classify each instance

in 𝐷𝑡+1 and record the number of instances that are classified (or

accepted) as positive by ℎ𝑖. Lines 10-12 check whether there are

too many instances in 𝐷𝑡+1 that have been classified as positive

by ℎ𝑖 to render class 𝑙𝑖 as similar to class 𝑙𝑡+1. 𝜆𝑠𝑖𝑚 is a threshold

controlling how many percent of instances in 𝐷𝑡+1 should be

classified to class 𝑙𝑖 before considering 𝑙𝑡+1 as similar/close to

class 𝑙𝑖. Lines 14-17 build a new classifier ℎ𝑡+1 and update all the

classifiers for classes in 𝑆𝐶.

In summary, the proposed learning process uses the set 𝑆𝐶 of

similar classes to the new class 𝑙𝑡+1 to control both the number of

classifiers need to be built/updated at time 𝑡 + 1 and also the

number of negative instances used in building the new classifier

ℎ𝑡+1. It thus greatly reduces the time compared to that of training

a 1-vs-rest multiclass classifier using all the data. However,

running existing classifiers to classify instances from the new

class will cause some overhead. But the overhead is small

compared to the training time needed when the number of classes

is very large.

Combining the cumulative learning process proposed in this

section and the cbsSVM learning method discussed in Section 4 as

the underlying learner, our system (which is able to handle both

challenges in cumulative learning) is called CL-cbsSVM (CL

stands for Cumulative Learning).

3.2 Testing the Cumulative Classification

Model
To test the new classification model 𝐻𝑡+1 = {ℎ1, ℎ2, … , ℎ𝑡, ℎ𝑡+1},

we follow the standard technique of combining the set of 1-vs-rest

binary CBS classifiers in 𝐻𝑡+1 to perform multiclass classification

with a rejection option for the unknown. As output scores from

different SVM classifiers are not comparable, the SVM scores for

each classifier are first converted to probabilities based on a

variant of Platt’s [27] algorithm, which is supported in LIBSVM

[7]. Let 𝑃(𝑦|𝐱) be a probabilistic estimator, where 𝑦 ∈ 𝑌𝑡+1(=
{𝑙1, 𝑙2, … , 𝑙𝑡, 𝑙𝑡+1}) is a class label and 𝐱 is the feature vector of a

test document. Let 𝜃 be the decision threshold (we use 0.5) and

 𝑦∗ be the final predicted class for 𝐱. Recall we use 𝑙0 to represent

all possible unknown classes. The classification on the test

document 𝐱 is done as follow:

Algorithm 1. Cumulative Learning

Input: Classification model Ht = {h1, h2,…, ht} till time t
 Past dataset {D1, D2,…, Dt} till time t

 New dataset Dt+1 at time t+1

 Similarity threshold λsim

Output: Updated classification model Ht+1 = {h1,…, ht, ht+1}

1: SC = empty;

2: for each classifier hi ∈ Ht do

3: CT = 0;

4: for each test instance dj ∈ Dt+1 do

5: class = hi (dj) // classify doc dj using hi

6: if class = 𝑙𝑖 then // wrongly classified

7: CT = CT + 1

8: end-if

9: end-for

10: if CT > λsim * |Dt+1| then

11: SC = SC ∪ {𝑙𝑖}

12: end-if

13: end-for

14: build ht+1 and add to Ht+1

15: for each hi of class 𝑙𝑖 ∈ SC do

16: update hi

17: end-for

18: return H t+1

𝑦∗ = {
𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌𝑡+1𝑃(𝑦|𝐱) 𝑖𝑓 𝑃(𝑦∗|𝐱) ≥ 𝜃

𝑙0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The idea is that for the test instance 𝐱 , each binary classifier

ℎ𝑖 ∈ 𝐻𝑡+1 is used to produce a probability 𝑃(𝑙𝑖|𝐱). If none of the

probabilities is greater than 𝜃 (= 0.5), the document represented

by 𝐱 is regarded as unseen or belonging to 𝑙0 ; otherwise it is

classified to the class with the highest probability.

4. Open Learning for Unseen Class Detection
This section gives an overview of the CBS learning method given

in [13]. It performs binary classification focusing on identifying

positive class documents and has a superior capability of detecting

unseen classes or classifying them as not positive. It provides the

base classification method for our cumulative learning. Below, we

first discuss the open space risk management strategy in [14], and

then apply an SVM-based CBS learning method [13] as a solution

towards the open space risk management strategy. Although CBS

learning only performs binary classification with the positive class

as the class of interest, applying the 1-vs-rest method described in

Section 3.2 gives us a multiclass CBS classification model, which

is called cbsSVM in [14].

4.1 Open space risk formulation
Consider the risk formulation for open world classification by

Scheirer et al. [31], where apart from empirical risk, there is risk

in labeling the open space (space away from positive training

examples) as “positive” for any unknown class. Due to the lack of

information of a classification function on the open space, open

space risk is approximated by a relative Lebesgue measure [34].

Let 𝑆𝑜 be a large ball of radius 𝑟𝑜 that contains both the positively

labeled open space 𝑂 and all of the positive training examples;

and let ℎ𝑦 be a measurable classification function where ℎ𝑦(𝐱) =

1 for recognition of class 𝑦 of interest and ℎ𝑦(𝐱) = 0 otherwise.

In our case, 𝑦 is simply any class of interest 𝑙𝑖.

In [14], 𝑂 is defined as the positively labeled area that is

sufficiently far from the center of the positive training examples.

Let 𝐵𝑟𝑦
(𝑐𝑒𝑛𝑦) be a closed ball of radius 𝑟𝑦 centered around the

center of positive class 𝑦 (𝑐𝑒𝑛𝑦), which, ideally, tightly covers all

positive examples of class 𝑦 only; 𝑆𝑜 be a larger ball 𝐵𝑟𝑂
(𝑐𝑒𝑛𝑦)

of radius 𝑟𝑜 with the same center 𝑐𝑒𝑛𝑦. Let classification function

ℎ𝑦(𝐱) = 1 when 𝐱 ∈ 𝐵𝑟𝑂
(𝑐𝑒𝑛𝑦), and ℎ𝑦(𝐱) = 0 otherwise. Also

let 𝑞 be the positive half of the space defined by a binary decision

hyperplane Ω obtained from a SVM classifier trained using

positive and negative training examples. We also define the size

of ball 𝐵𝑟𝑂
 be bounded by Ω, i.e., 𝐵𝑟𝑂

⋂ 𝑞 = 𝐵𝑟𝑂
. Open space is

defined as,

𝑂 = 𝑆𝑜 − 𝐵𝑟𝑦
(𝑐𝑒𝑛𝑦)

where radius 𝑟𝑂 of 𝑆𝑜 needs to be determined during learning for

each known positive class.

This open space formulation greatly reduces the open space risk

compared to those of traditional SVM and 1-vs-Set Machine in

[31]. Traditional SVM uses classification function ℎ𝑦
𝑆𝑉𝑀(𝐱) = 1

when 𝐱 ∈ 𝑞 , and its positive open space being approximately

𝑞 − 𝐵𝑟𝑦
(𝑐𝑒𝑛𝑦) , which is only bounded by the SVM decision

hyperplane Ω. For 1-vs-Set Machine in [31], it has classification

function ℎ𝑦
1−𝑣𝑠−𝑠𝑒𝑡(𝐱) = 1 when 𝐱 ∈ 𝑔 , where 𝑔 is a slab area

with thickness 𝛿 bounded by two parallel hyperplanes Ω and Ψ

(Ψ ∥ Ω) in 𝑞 , and its positive open space is approximately

𝑔 − 𝐵𝑟𝑦
(𝑐𝑒𝑛𝑦). Given open space formulations of the traditional

SVM and 1-vs-Set Machine, we can see that both methods label

an unlimited area as positively labeled space, while the

formulation in [14] reduces it to a bounded spherical area.

Given the above open space definition, the question is how to

estimate 𝑆𝑜 (or the radius 𝑟𝑂) for the positive class. The center-

based similarity space (CBS) learning proposed by Fei and Liu

[13] is suitable for the purpose, which was originally proposed to

deal with negative covariate shift. Below, we introduce CBS

learning and briefly discuss why it is suitable for the new

problem.

4.2 Center-Based Similarity Space Learning
Let 𝐷 = {(𝑑1, 𝑦1), (𝑑2, 𝑦2), … , (𝑑𝑛 , 𝑦𝑛)} be the set of training

examples, where 𝑑𝑘 is a document and 𝑦𝑘 ∈ {1, −1} is its class

label. In traditional classification, each 𝑑𝑘 is represented with a

feature vector 𝐱𝑘 , which we call a document space vector (ds-

vector), and 𝐷 is directly used to build a binary classifier.

However, CBS learning transforms each ds-vector 𝐱𝑘 (no change

to its class label) to a center-based similarity space feature vector

(CBS vector) 𝐜𝐛𝐬-𝐯𝑘 . Each feature in 𝐜𝐛𝐬-𝐯𝑘 is a similarity

between the center 𝐜𝑗 of the positive class documents and 𝐱𝑘. A

classifier can be build based on CBS vector representations of

documents in 𝐷, i.e., each 𝐱𝑘 is replaced with 𝐜𝐛𝐬-𝐯𝑘 .

To make CBS learning more effective by generating more

similarity features, we can use multiple document space

representations or feature vectors to represent each document 𝑑𝑘

and also employ multiple similarity measures. The detailed

technique is as follows.

Instead of using only one ds-vector 𝐱𝑘 to represent a document

𝑑𝑘 , we use a set 𝑅𝑘 of ds-vectors 𝑅𝑘 = {𝒙1
𝑘 , 𝒙2

𝑘 , … , 𝒙𝑝
𝑘} , where

each ds-vector 𝒙𝑗
𝑘 denotes one document space representation of

𝑑𝑘, e.g., unigram or bigram. Due to multiple representations, we

have multiple centers also for the positive class, 𝐶 =

{𝒄1, 𝒄2, … , 𝒄𝑝}, where each 𝐜𝑗 corresponds to one document space

representation . We use the Rocchio method in information

retrieval [19, 23] to compute 𝒄𝑗 (a vector) using the corresponding

ds-vectors of all positive and negative training documents.

𝐜𝑗 =
𝛼

|𝐷+|
∑

𝐱𝑗
𝑘

‖𝐱𝑗
𝑘‖

𝑑𝑘∈𝐷+

−
𝛽

|𝐷 − 𝐷+|
∑

𝐱𝑗
𝑘

‖𝐱𝑗
𝑘‖

𝑑𝑘∈𝐷−𝐷+

where 𝐷+ is the set of positive documents and |.| is the size

function. 𝛼 and 𝛽 are parameters. It is reported in [4] that using tf-

idf representation, 𝛼 = 16 and 𝛽 = 4 usually work quite well.

The subtraction is applied to reduce the influence of those terms

that are not discriminative (i.e., terms appearing in both classes).

Based on 𝑅𝑘 for document 𝑑𝑘 (either in the training and testing

set) and the computed set of centers 𝐶 (computed using only the

training data), we can transform a document 𝑑𝑘 from its document

space representations 𝑅𝑘 to a center-based similarity vector

𝐜𝐛𝐬-𝐯𝑘 by applying a similarity function 𝑆𝑖𝑚 on each element 𝐱𝑗
𝑘

of 𝑅𝑘 and its corresponding center 𝐜𝑗 in 𝐶.

𝐜𝐛𝐬-𝐯𝑘 = 𝑆𝑖𝑚(𝑅𝑘 , 𝐶)

𝑆𝑖𝑚 can contain a set of similarity measures. Each measure 𝑚 is

applied to 𝑝 document representations in 𝑅𝑘 and their

corresponding centers in 𝐶 to generate 𝑝 similarity features (cbs-

features) in 𝐜𝐛𝐬-𝐯𝑘.

For ds-features, unigrams and bigrams with tf-idf weighting were

used as two document representations. The similarity measures

are the five ones described in [13], which produce 10 CBS

features to represent a document in the CBS space. Based on the

CBS space representation, we can run SVM to produce a CBS

classifier ℎ𝑦.

We now briefly explain why CBS learning gives a good estimate

to 𝑆𝑜 . Due to using similarities as features, CBS learning

generates a boundary to separate the positive and negative training

data in the similarity space. As a similarity has no direction (or it

covers all directions), the boundary in the similarity space is

essentially a “ball” encompassing the target/positive class training

data in the original document space. The “ball” is an estimate of

𝑆𝑜 based on those similarity measures. The main assumption by

the CBS learning is that the target class data should be unimodal

in order for the “ball” not to cover too much open space.

5. Evaluation
In this section, we evaluate our proposed system and compare it

with extensive baselines in terms of both classification results and

computational speed.

5.1 Datasets
To evaluate the proposed cumulative learning method, we need a

fully labeled document collection with a large number of classes.

One kind of dataset that naturally comes with a large number of

classes is product reviews, which contains reviews for different

product categories. Note that although we use this product reviews

collection, we do not perform sentiment classification. Instead, we

still perform the traditional topic based classification. That is,

given a review, the system has to decide what type of product the

review is about. We use Amazon product reviews of 100 domains

(or types of products) that were used in [8] as one dataset. Each

domain contains 1000 reviews. We also perform evaluation using

another publicly available dataset 20-newsgroup. For 20-

newsgroup, we use the “18828'” version, which contains 20 non-

overlapping classes, in total 18828 text documents with no

duplicates. For each class/domain in both datasets, we randomly

keep 70% of the documents for training and the rest 30% for

testing.

For experiments in this paper, we do not perform any over-

sampling or under-sampling for all methods for two reasons. First,

as we will discuss later, our experiments have multiple settings

that use different number of domains, it is hard to select the

optimal sampling number every time, and it is also not the focus

of our paper. Secondly, since this strategy applies to all the

methods, we do not bias against any one.

5.2 Baselines
Our supervised learning baselines can be classified into two

categories depending on the strategy they use given new classes of

documents. All the supervised learning baselines discussed below

except CL-1-vs-rest-SVM are based on rebuilding strategy. CL-1-

vs-rest-SVM is a variation of our proposed CL-cbsSVM, which is

able to cumulatively update the system given a new class of

documents. For more complete evaluation, apart from supervised

learning baseline methods, we also include a semi-supervised

learning method, called Exploratory-EM, as a baseline because it

allows new classes to be created during the EM iterations. All the

baseline methods are listed below.

1-vs-Rest multiclass SVM (1-vs-rest-SVM). This is the standard

1-vs-rest multiclass SVM with Platt Probability Estimation [27],

which only supports rebuilding strategy. It works in the same way

as cbsSVM [14] except that it uses the document space

classification. This baseline is based on the linear SVM with

probabilistic outputs in LIBSVM (version 3.20) [7]. Similar to

cbsSVM, for open world classification, decision threshold 𝜃 = 0.5

is used for detecting documents from new classes (similar to that

in Section 3.2). We use the linear kernel as many researchers have

shown that linear SVM performs the best for text classification

[19]. We also tried other kernels, but they were poorer.

1-vs-Set Machine (1-vs-set-linear). This is the 1-vs-Set Machine

in [31], which only supports rebuilding strategy. We use all the

default parameter settings in the original paper. That is, the near

and far plane pressures are set at 𝑝𝐴 = 1.6 and 𝑝Ω = 4

respectively; regularization constant 𝜆𝑟 = 1 and no explicit hard

constraints are used on the training error (𝛼 = 0, 𝛽 = 1).

W-SVM (wsvm-linear and wsvm-rbf). These two baselines

combine RBF one-class SVM with binary SVM [32]. Both linear

kernel and RBF kernel are tested. For thresholding the output, two

parameters 𝛿𝜏 and 𝛿𝑅 are required. We set 𝛿𝜏 = 0.001, which is

used to adjust what data the one-class SVM considers to be

remotely related. 𝛿𝑅 is a required decision threshold with the same

effect as our 𝜃, which is not only for W-SVM, but also for the

next baselines (PI-SVM). Two ways of setting 𝛿𝑅 were suggested

by the paper authors. We set it as the prior probability of the

number of unseen classes during evaluation (testing). An

alternative way is to set it based on an openness score computed

using the number of training and testing classes. We tried both

methods and found the former gave better results.

PI-SVM (Pi-svm-linear and Pi-svm-rbf). These two baselines are

from [18], which estimate the probability of inclusion based on

output of binary SVMs with two kernels. As stated above, the

threshold 𝛿 is set as the prior probability of the number of unseen

classes in test. As both W-SVM and PI-SVM need pre-trained 1-

vs-rest SVM and the step of calibrating SVM scores by fitting

WeiBull distributions, both of these baselines only support

rebuilding strategy given new classes of documents.

Cumulative Learning with 1-vs-Rest SVM (CL-1-vs-rest-SVM).

Intuitively, the choice of the underlying learner should affect

cumulative learning in both classification result and running time.

As our proposed cumulative learning process is independent of

the learner used in building the classifier, instead of using cbsSVM

as the underlying learner, we apply 1-vs-rest-SVM in cumulative

learning process (see Section 3.1) as another baseline. This is the

only supervised learning baseline that supports cumulative update

of the model without rebuilding the system from scratch given a

new class of documents.

Exploratory Seeded K-Means (Exploratory-EM). In [11], three

well-known multiclass semi-supervised learning methods were

extended under the exploratory EM framework. We compare with

exploratory Seeded K-Means due to its superior performance on

20newsgroup dataset. We also applied the criteria that work the

best in the original paper for creating new classes and for model

selection, i.e., the MinMax criterion and the AICc criterion. Note

that Exploratory-EM works in the semi-supervised setting and

uses both the training and test data as labeled and unlabeled data

in learning. The algorithm supports two modes. The “explore”

mode allows new classes to be created while the “semisup” mode

does not. As more than one new class can be introduced during

learning in the “explore” mode, for comparison we lump together

all instances assigned to new classes as being rejected (unknown).

In the experiments, we set the max number of iterations to be 50.

Little changes in results are shown after 50 iterations.

All documents use tf-idf term weighting scheme with no feature

selection. Source code for baselines such as 1-vs-Set Machine1,

W-SVM and PI-SVM2, and Exploratory learning3, is provided by

the authors of their original papers.

One thing to note is that we did not include any 1-vs-1 SVM

based multiclass classification methods as baselines. This is

because although a 1-vs-1 SVM technique for multiclass

classification can support learning cumulatively by adding 𝑡 new

1-vs-1 classifiers for the arrival of the (𝑡 + 1)𝑡ℎ class, none of the

existing such methods can support open world classification.

5.3 Experimental Settings
Following that in [11, 18], we conduct open world cross-

validation style evaluation, holding out some classes in training

and mixing them back during testing, and varying the number of

training and test classes. Since for a given dataset, the number

(percentage) of training classes 𝑚 and the number of test classes 𝑛

can vary, there are many ways to generate a train-test partition.

We report our results using 5 random train-test partitions for each

combination of 𝑚 and 𝑛. In particular, we vary the number of test

classes for Amazon (𝑛 = 50, 75, 100), and for 20-newsgroup

(𝑛 = 20). For each of these choices on the number of test classes,

we also select 𝑚 = 33%, 66% and 100% of the number of test

classes for training. Varying the ratio of the number of training

classes to test classes is to test the robustness of different systems

in handling different “openness” of the problem.

When 𝑚 = 100% of test classes are used for training, the problem

reduces to the closed world classification. As most of our

baselines such as those based on W-SVM and PI-SVM all use the

prior knowledge to set decision threshold 𝛿𝑅 = 0 in the closed

world setting, for fair comparison, we also set the threshold 𝜃 = 0

for methods 1-vs-rest-SVM, CL-1-vs-rest-SVM, cbsSVM and CL-

cbsSVM. By doing this, we always assign a known class label to a

test instance. For Exploratory-EM, we use the provided “semisup”

mode instead of “explore” mode, which allows no new classes to

be introduced in learning.

For methods that support our proposed cumulative update (CL-

cbsSVM and CL-1-vs-rest-SVM), we build a 𝑘 -class classifier

system starting from only 2 classes and cumulatively add new

1 https://github.com/Vastlab/liblinear.git
2 https://github.com/ljain2/libsvm-openset
3 http://www.cs.cmu.edu/~bbd/ExploreEM_package.zip

classes to the system one at a time till 𝑘 classes. We set 𝜆𝑠𝑖𝑚 =
2% for all methods, as it gives the best results, and we will

discuss its effect in section 5.4.2. For methods that use rebuilding

strategy (1-vs-rest-SVM, 1-vs-set-linear, wsvm-linear, wsvm-rbf,

Pi-svm-linea, and Pi-svm-rbf, cbsSVM), instead of simulating the

whole process of building classifiers starting from 2 classes till 𝑘

classes by rebuilding the system over and over again, we only

build a 𝑘-class classifier once using all the 𝑘 classes to simulate

what happens when the kth class arrives.

For all the methods that use the RBF kernel, the parameters are

tuned via cross validation on the training data, yielding (𝐶 =
5, 𝛾 = 0.2) for Amazon and (𝐶 = 10, 𝛾 = 0.5) for 20-newsgroup.

5.4 Experimental Results and Comparison
In this section, we first show the classification results of all the

methods discussed in this paper on both the open world and

closed world classification tasks. We then conduct running time

analysis in section 5.4.2 to compare their efficiency. Finally, we

perform qualitative analysis of the proposed cumulative learning.

5.4.1 Classification Results
In order to compare the classification results of different systems,

for each train-test partition, we first compute precision, recall and

F1 score for each class and then macro-average the results across

all classes. Final results are given by averaging the results of 5

random train-test partitions. We only show F1 scores in the paper.

We show the results of different methods on open world

classification in Table 1, which has four sets of results. More

specifically, from left to right, we show results of different

methods on Amazon data when the number of test classes

𝑛 = 50, 75, 100 , and 20newsgroup data when 𝑛 = 20 . Within

each sub-table, different columns list results of different methods

when different proportions of test classes are used for training.

From Table 1, we can clearly see that cbsSVM performs the best

in all settings. Even when 100% of the test classes are used for

training (the traditional closed world classification), cbsSVM still

performs the best in all settings. Note that it does not use

cumulative update of the system given new classes of documents.

That is, it is based on the re-building strategy.

We also notice that the proposed CL-cbsSVM (which is the

cumulative version) almost always gives the second best results

except that it loses to Pi-svm-rbf in one setting (𝑛 = 75, 𝑚 =
66%), but better than all other methods based on rebuilding

strategy. It is not surprising that CL-cbsSVM loses to cbsSVM,

 m =33% 66% 100% 33% 66% 100% 33% 66% 100% 33% 66% 100%

1-vs-rest-SVM 0.498 0.501 0.568 0.442 0.490 0.541 0.460 0.444 0.418 0.652 0.714 0.808

cbsSVM 0.580 0.632 0.639 0.546 0.581 0.619 0.579 0.565 0.569 0.662 0.728 0.835

CL-cbsSVM 0.549 0.610 0.623 0.511 0.574 0.616 0.536 0.552 0.549 0.644 0.716 0.820

CL-1-vs-rest-SVM 0.352 0.511 0.472 0.488 0.440 0.424 0.352 0.373 0.394 0.417 0.632 0.713

1-vs-set-linear 0.437 0.496 0.334 0.379 0.499 0.534 0.379 0.463 0.290 0.620 0.529 0.606

wsvm-linear 0.506 0.537 0.335 0.454 0.535 0.547 0.465 0.499 0.309 0.597 0.606 0.710

wsvm-rbf 0.347 0.382 0.398 0.278 0.357 0.544 0.264 0.289 0.095 0.417 0.643 0.812

Pi-svm-linear 0.507 0.539 0.337 0.454 0.536 0.550 0.465 0.499 0.303 0.598 0.608 0.712

Pi-svm-rbf 0.407 0.595 0.409 0.388 0.576 0.603 0.389 0.562 0.310 0.435 0.715 0.806

ExploratoryEM 0.419 0.523 0.618 0.366 0.514 0.576 0.377 0.480 0.538 0.559 0.690 0.823

 (a) amazon (n=50) (b) amazon (n=75) (c) amazon (n=100) (d) 20newsgroup (n=20)

Table 1. Macro-F1 scores for cumulative learning under open world classification

because cbsSVM uses all the classes when building the classifier

while CL-cbsSVM only rely on a small subset of previous classes.

This leads to dramatic efficiency increase over cbsSVM as will be

shown in Section 5.4.2. In contrast to CL-cbsSVM, the baseline

method CL-1-vs-rest-SVM, which also supports learning

cumulatively, performs poorly in both open world and closed

world classification tasks. The main reason is that its underlying

learner SVM learns in the document space. Due to this reason,

SVM is not suitable in handling unseen classes, identifying

similar domains, or learning effectively given similar classes

during the cumulative learning process.

We also notice that Exploratory-EM gives one of the best results

in closed world classification tasks, but doesn’t perform very well

in open world situations. We believe this is because Exploratory-

EM uses test data in learning, so it performs well in traditional

semi-supervised learning tasks. But in open world classification

tasks, as stated in [11], Exploratory-EM only focuses on the

domains in which seed (training) documents are provided, which

is not the case in our setting.

5.4.2 Running Time Analysis
Apart from classification results, we are also interested in

evaluating the efficiency of each method. For comparison, we

measure the time it takes for different systems to rebuild or

cumulatively update when the last new class is presented in each

setting. For methods based on the rebuilding strategy, this is

equivalent to the total training time because we only build the

system once using all the training classes.

In this paper, all experiments are conducted using a single thread

on a single 64-bit Windows server with Intel Xeon X5650

2.67GHz CPU. At the same time, we are also aware that some of

the experimented methods can be easily parallelized. For example,

a single classifier can be trained on a different machine for 1-vs-

rest-SVM, 1-vs-set-linear and cbsSVM. And for methods based on

the proposed cumulative learning process CL-cbsSVM and CL-1-

vs-rest-SVM, both detecting similar classes and building/updating

existing classifiers can be sent to different machines to speed up

the overall running time. However, we plan to leave this part of

work to the future.

For all the methods except Exploratory-EM, we implemented data

preprocessing and transformation in Java, and called LIBSVM [7]

or its extension packages for training. Summary of the running

time of different methods is shown in Figure 2. The x-axis

indicates experimental settings. For example, 50 * 0.33 indicates

the setting in which 50 * 0.33 (=16) classes are used to train, and

50 classes for testing. The reason we show it this way is because

Exploratory-EM is a semi-supervised method, the number of test

domains also affects its running time. The y-axis indicates running

time (in seconds) to rebuild/update the system when the last

domain (50 * 0.33 = 16th) arrives. Due to the wide range of

running time of different algorithms, the y-axis (seconds) is in

log2 scale. However, note that two reasons made the running time

of Exploratory-EM algorithm not very comparable. Firstly, the

Exploratory Learning package was written in Matlab. Secondly,

it’s a semi-supervised method, which uses test data during

learning.

Figure 2. Running Time Summary

Figure 3. Number of Classifiers Trained Each Time

CL-cbsSVM CL-1-vs-rest-SVM

Diaper Clothing Headphone Lamp Laptop Diaper Clothing Headphone Lamp Laptop

Baby Baby CDPlayer Kindle HardDrive Baby Baby DVDPlayer
Home

Improvement
HardDrive

Clothing
ArtsCrafts

Sewing
CarStereo Books Lamp Care Automotive CDPlayer Kindle Computer

 Care Amplifier Battery DVDPlayer Care CarStereo Automotive Clothing

 Beauty Care Computer Clothing Beauty Amplifier
Industrial

Scientific
Automotive

 Clothing
ArtsCrafts

Sewing
ArtsCrafts

Sewing
Clothing DVDPlayer

Home
Improvement

 GPS Automotive Battery Care Clothing Battery

 Beauty CarStereo Gloves Battery Car Stereo

 CDPlayer CDPlayer Golf CDPlayer DVDPlayer

BluRay
Player

Camcorder

(2 more)
GPS

(1 more)
Care

(9 more)
Kindle

(11 more)

Table 2. Selected Negative Training Classes by CL-1-vs-rest-SVM and CL-cbsSVM

60.00

240.00

960.00

3840.00

15360.00

61440.00

50*0.33 75*0.33 50*0.66 75*0.66 50*1 100*0.66 75*1 100*1

1-vs-rest-SVM cbsSVM CL-cbsSVM

1-vs-set-linear wsvm-linear wsvm-rbf

pi-svm-linear pi-svm-rbf ExploratoryEM

CL-1-vs-rest-SVM

1

2

4

8

16

32

64

128

1 5 9

13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

CL-cbsSVM (lambda=2%) CL-cbsSVM (lambda=5%)

CL-cbsSVM (lambda=10%) 1-vs-rest

CL-1-vs-rest-SVM

From Figure 2, we are able to make several interesting

observations. Firstly, apart from Exploratory-EM, cbsSVM takes

longer time to run compared to other 1-vs-rest methods, which is

due to the extra data preprocessing and transformation overhead

and the use of RBF kernel. Secondly, our proposed CL-cbsSVM

takes the shortest time to update especially when the number of

classes is big. Due to the data transformation overhead, it is

slightly slower than some other baselines when the number of

classes is small. Thirdly, although also based on the updating

strategy, running speed of CL-1-vs-rest-SVM is dramatically

slower than that of CL-cbsSVM. This is because CL-1-vs-rest-

SVM uses SVM as the underlying learner and is not good at

identifying new classes. Thus many existing classifiers

misclassify many instances from the new class and get retrained.

As the number of classes in the system increases over time, this

effect is amplified further. Lastly, most of other algorithms based

on 1-vs-rest SVM (1-vs-rest-SVM, 1-vs-set-linear, wsvm-linear,

wsvm-rbf, Pi-svm-linear and Pi-svm-rbf) have similar running

time and trend with the increase on the number of training

classes/domains.

Although the running time of different methods is affected by

many factors, another way of comparing the efficiency of

different approaches is to look at the number of classifiers they

build/update each time a new class arrives starting from two

classes to 𝑘 classes. In Figure 3, we show results for CL-1-vs-rest-

SVM, CL-cbsSVM as well as all methods based on the rebuilding

strategy. The y-axis indicates the number of classifiers that were

built/updated (in log2 scale) and x-axis is the arrival of the ith class.

As all the methods based on the rebuilding strategy always build 𝑡

classifiers when the tth new class is presented to the system, it is

thus the upper bound for CL-1-vs-rest-SVM and CL-cbsSVM. To

illustrate the effect of 𝜆𝑠𝑖𝑚 parameter, we vary the parameter

𝜆𝑠𝑖𝑚 = 10%, 5%, 2% for both systems. But for the simplicity of

the plot, we only show 𝜆𝑠𝑖𝑚 = 2% for CL-1-vs-rest-SVM, as both

methods show similar trends by varying 𝜆𝑠𝑖𝑚. Since the sequence

of arrival of new classes affects the results of our method, we

average the numbers across 5 runs.

From Figure 3, we can see that CL-1-vs-rest-SVM clearly builds

more classifiers than CL-cbsSVM does when 𝜆𝑠𝑖𝑚 is set at 2% for

both systems. By comparing different 𝜆𝑠𝑖𝑚 values for CL-

cbsSVM, we see that on average smaller 𝜆𝑠𝑖𝑚 leads to more

classifiers being updated. This is intuitive because smaller 𝜆𝑠𝑖𝑚

indicates being stricter on if an old classifier should be updated,

while at the same time, smaller 𝜆𝑠𝑖𝑚 gives slightly better accuracy

in classification, which is also intuitive.

5.4.3 Qualitative Analysis of Cumulative Learning
One way to gain more insight into our proposed cumulative

learning system CL-cbsSVM is by looking at what existing classes

are selected as the negative training data during its learning

process in building/updating classifiers when new classes arrive.

Intuitively, an effective and efficient learning algorithm should be

able to select the minimal number of closely relevant domains

instead of lots of irrelevant ones. For comparison, we also show

the results from CL-1-vs-rest-SVM with the same class arrival

order. Table 2 lists the negative classes picked by both methods

for the 26th till the 30th new class when building the system

cumulatively on the Amazon data. The second row shows the

names of the new classes, and each column shows the chosen

similar classes by each system. The reason we pick these five

positions is because there are enough existing classes for a system

to make mistakes, and not too many so that we can still list them

in the paper. In fact, CL-1-vs-rest-SVM still picked too many

classes beyond what we can enumerate in the paper. We also tried

to manually identify those picked classes that we feel are

unrelated, and they are marked in red.

From the results shown in Table 2, we can easily tell that not only

the number of negative training classes selected by CL-cbsSVM is

much smaller, they are also more relevant than those picked by

CL-1-vs-rest-SVM.

6. Conclusion
This paper proposed the new task of cumulative learning as a

special form of supervised lifelong machine learning. Two unique

challenges in cumulative learning are identified and presented,

namely, the ability to detect data from unseen classes in the test

set and the ability to selectively update the existing classification

model without requiring rebuilding the whole system from

scratch. We also proposed a cumulative learning strategy, which

we believe is similar to human concept learning. It only requires

updating part of the existing classification model whenever a new

class of data arrives and needs to be covered by the classification

model. As time goes by, the system keeps learning more and more

in an efficient manner and becomes more and more

knowledgeable. To deal with the first problem of open world

classification, we adopted a recent solution based on center-based

similarity space (CBS) learning, which is able to balance open

space risk and empirical risk during training. Through extensive

experiments by building classifiers for up to 100 consecutive

classes, and comparing with strong baselines, we demonstrated

the effectiveness and efficiency of the proposed approach.

7. ACKNOWLEDGMENTS
This work was supported in part by a grant from National Science

Foundation (NSF) under grant no. IIS-1407927, a NCI grant

under grant no. R01CA192240, and a gift from Bosch.

8. REFERENCES
[1] A. Blum. On-line algorithms in machine learning. In

Proceedings of the Workshop on On-Line Algorithms,

Dagstuhl, pages 306-325. 1996.

[2] C. Bravo, J. L. Lobato, R. Weber, and G. L'Huillier. A hybrid

system for probability estimation in multiclass problems

combining svms and neural networks. In HIS '08:

Proceedings of the 2008 8thInternational Conference on

Hybrid Intelligent Systems, pages 649-654, 2008.

[3] E. Brunskill and L. Li. Pac-inspired option discovery in

lifelong reinforcement learning. In T. Jebara and E. P. Xing,

editors, Proceedings of the 31st International Conference on

Machine Learning (ICML-14), pages 316–324. JMLR

Workshop and Conference Proceedings, 2014.

[4] C. Buckley, G. Salton, and J. Allan. The effect of adding

relevance information in a relevance feedback environment.

In Proceedings of the 17th Annual International ACM SIGIR

Conference on Research and Development in Information

Retrieval, SIGIR ’94, pages 292–300, 1994.

[5] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R.

Hruschka, and T. M. Mitchell. Toward an architecture for

never-ending language learning. In AAAI, 2010.

[6] G. Cauwenberghs and T. Poggio. Incremental and

decremental support vector machine learning, 2000.

[7] C.-C. Chang and C.-J. Lin. Libsvm: A library for support

vector machines. ACM Trans. Intell. Syst. Technol.,

2(3):27:1–27:27, May 2011.

[8] Z. Chen and B. Liu. Topic modeling using topics from many

domains, lifelong learning and big data. In ICML, pages

703–711, 2014.

[9] Z. Chen, N. Ma and B. Liu. Lifelong Learning for Sentiment

Classification. Proceedings of the 53st Annual Meeting of

the Association for Computational Linguistics (ACL-2015,

short paper), 26-31, July 2015, Beijing, China.

[10] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y.

Singer. Online passive-aggressive algorithms. Journal Of

Machine Learning Research, 7:551–585, 2006.

[11] B. Dalvi, W. W. Cohen, and J. Callan. Exploratory learning.

In ECML, 2013.

[12] K.-B. Duan and S. S. Keerthi. Which is the best multiclass

svm method? An empirical study. In Proceedings of the 6th

International Conference on Multiple Classifier Systems,

MCS’05, pages 278–285, Berlin, Heidelberg, 2005.

[13] G. Fei and B. Liu. Social media text classification under

negative covariate shift. In Proceedings of the 2015

Conference on Empirical Methods in Natural Language

Processing, pages 2347–2356, Lisbon, Portugal.

[14] G. Fei and B. Liu. Breaking the Closed World Assumption in

Text Classification. In Proceedings of the 2016 NAACL.

[15] M. Fink, S. Shalev-Shwartz, Y. Singer, and S. Ullman.

Online multiclass learning by interclass hypothesis sharing.

In Proceedings of the 23rd International Conference on

Machine Learning, ICML ’06, pages 313–320, 2006.

[16] V. J. Hodge and J. Austin. A survey of outlier detection

methodologies. Artificial Intelligence Review, 22:2004,

2004.

[17] T.-K. Huang, R. C. Weng, and C.-J. Lin. Generalized

Bradley-Terry models and multi-class probability estimates.

J. Mach. Learn. Res., 7:85–115, Dec. 2006.

[18] L. P. Jain, W. J. Scheirer, and T. E. Boult. Multi-class open

set recognition using probability of inclusion. In The

European Conference on Computer Vision (ECCV),

September 2014.

[19] T. Joachims. Text categorization with support vector

machines: Learning with many relevant features. In

Proceedings of the 10th European Conference on Machine

Learning, ECML ’98, pages 137–142, 1998.

[20] S. M. Kakade, S. Shalev-Shwartz, and A. Tewari. Efficient

bandit algorithms for online multiclass prediction. In

Proceedings of the 25th International Conference on

Machine Learning, ICML ’08, pages 440–447, 2008.

[21] J. Kang, J. Ma, and Y. Liu. Transfer topic modeling with

ease and scalability. In Proceedings of SDM, pages 564–575.

2012

[22] S. S. Khan and M. G. Madden. One-class classification:

Taxonomy of study and review of techniques. CoRR,

abs/1312.0049, 2013.

[23] C. D. Manning, P. Raghavan, and H. SchAijtze. Introduction

to Information Retrieval. Cambridge University Press, 2008.

[24] M. Markou and S. Singh. Novelty detection: A review- part

1: Statistical approaches. Signal Processing, 83:2003, 2003.

[25] S. J. Pan and Q. Yang. A survey on transfer learning.

[26] A. Pentina and C. H. Lampert. A pac-bayesian bound for

lifelong learning. In International Conference on Machine

Learning (ICML), 2014.

[27] J. C. Platt. Probabilistic outputs for support vector machines

and comparisons to regularized likelihood methods. In

ADVANCES IN LARGE MARGIN CLASSIFIERS, pages

61–74. MIT Press, 1999.

[28] J. J. Rocchio. Relevance feedback in information retrieval. In

G. Salton, editor, The Smart retrieval system - experiments in

automatic document processing, pages 313–323. Englewood

Cliffs, NJ: Prentice-Hall, 1971.

[29] P. Ruvolo and E. Eaton. Active task selection for lifelong

machine learning. In Proceedings of the 27th AAAI

Conference on Artificial Intelligence (AAAI-13), July 2013.

[30] P. Ruvolo and E. Eaton. Ella: An efficient lifelong learning

algorithm. In ICML (1), volume 28 of JMLR Proceedings,

pages 507–515. JMLR.org, 2013.

[31] W. J. Scheirer and T. E. Boult. Towards open set recognition.

[32] W. J. Scheirer, L. P. Jain, and T. E. Boult. Probability models

for open set recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence (T-PAMI), 36, 11/ 2014.

[33] B. Schölkopf, J. C. Platt, J. Shawe-taylor, A. J. Smola, and R.

C. Williamson. Estimating the support of a high-dimensional

distribution, 1999.

[34] N. Shackel. Bertranda’s paradox and the principle of

indifference. Philosophy of Science, 74(2): 150–175, 2007.

[35] D. L. Silver, Q. Yang, and L. Li. Lifelong machine learning

systems: Beyond learning algorithms. In AAAI Spring

Symposium: Lifelong Machine Learning, volume SS-13-05

of AAAI Technical Report. AAAI, 2013.

[36] D. L. Silver and R. Poirier. Sequential consolidation of

learned task knowledge. In Proceedings of the17th

Conference of the Canadian Society for Computational

Studies of Intelligence, Canadian AI 2004, Canada, May 17-

19, 2004.

[37] D. M. J. Tax and R. P. W. Duin. Support vector domain

description. Pattern Recognition Letters, 20:1191–1199,

1999.

[38] S. Thrun. Is learning the n-th thing any easier than learning

the first? In NIPS, pages 640–646, 1996.

[39] S. Thrun and T. M. Mitchell. Lifelong robot learning.

Technical report, Robotics and Autonomous Systems, 1993.

[40] T. Xiao, J. Zhang, K. Yang, Y. Peng, and Z. Zhang. Error-

driven incremental learning in deep convolutional neural

network for large-scale image classification. In ACM

Multimedia, 2014.

[41] B. Zadrozny and C. Elkan. Transforming classifier scores

into accurate multiclass probability estimates, 2002.

[42] P. Zhao, S. C. H. Hoi, and R. Jin. Double updating online

learning. Journal of Machine Learning Research, 12:1587–

1615, 2011.

