
Learning Cumulatively to Become More Knowledgeable 

 
Geli Fei, Shuai Wang and Bing Liu 

Department of Computer Science 
University of Illinois at Chicago 

Chicago, IL, USA 
gfei2@uic.edu, shuaiwanghk@gmail.com, liub@cs.uic.edu 

 

 

 

ABSTRACT 

In classic supervised learning, a learning algorithm takes a fixed 

training data of several classes to build a classifier. In this paper, 

we propose to study a new problem, i.e., building a learning 

system that learns cumulatively. As time goes by, the system sees 

and learns more and more classes of data and becomes more and 

more knowledgeable. We believe that this is similar to human 

learning. We humans learn continuously, retaining the learned 

knowledge, identifying and learning new things, and updating the 

existing knowledge with new experiences. Over time, we 

cumulate more and more knowledge. A learning system should be 

able to do the same. As algorithmic learning matures, it is time to 

tackle this cumulative machine learning (or simply cumulative 

learning) problem, which is a kind of lifelong machine learning 

problem. It presents two major challenges. First, the system must 

be able to detect data from unseen classes in the test set. Classic 

supervised learning, however, assumes all classes in testing are 

known or seen at the training time. Second, the system needs to be 

able to selectively update its models whenever a new class of data 

arrives without re-training the whole system using the entire past 

and present training data. This paper proposes a novel approach 

and system to tackle these challenges. Experimental results on two 

datasets with learning from 2 classes to up to 100 classes show 

that the proposed approach is highly promising in terms of both 

classification accuracy and computational efficiency. 

Keywords 

Cumulative machine learning; lifelong machine learning; unseen 

classes; open world classification 

1. INTRODUCTION 
Supervised learning has been very successful in research and in 

applications. However, existing supervised learning research has 

focused on developing effective individual statistical algorithms 

that learn accurate models or classifiers given a fixed dataset. 

Relatively little research has been done on how to build 

continuous learning systems that learn cumulatively and become 

more and more knowledgeable as the system sees more and more 

classes of data over time.  

Let us use an example to motivate this research. The 2016 

presidential election in the USA has been a hot topic on social 

media and many social science researchers rely on the collected 

online user discussions to carry out political science research. 

During the long campaign, every new proposal made by a 

presidential candidate is followed by a huge amount of 

discussions on social media. A multiclass classifier is thus needed 

to track and to organize the discussions from the general public. 

As the campaign goes on, the initially built model or classifier 

will inevitably and frequently encounter new topics (e.g. Donald 

Trump's plan for immigration reform or Hillary Clinton's new 

proposal for tax increase) that have not been covered in previous 

learning. In this case, the classifier must first be able to detect 

these new topics when they occur rather than classifying them into 

some existing classes or topics. Second, after enough training 

examples of new/unseen topics are collected by human users, the 

existing classifier should incorporate the new classes or topics in 

the classification system in a manner that does not require 
rebuilding the whole classification system from scratch. 

Based on this example, we can see two inter-related challenges in 

building a multiclass cumulative supervised learning system: (1) 

the ability to continuously detect new/unseen classes of data that 

have not been covered in training by the current classification 

system, and (2) the ability to cumulatively add new classes to the 

system without having to re-train the entire system from scratch 

using all the past training data. In this paper, we aim to solve these 

two problems in the context of text classification. We call this 

cumulative machine learning or simply cumulative learning, 

which is a special form of lifelong machine learning [5, 26, 35, 
39]. Formally, cumulative learning is stated as follows:  

Problem Statement (Cumulative Learning): At any time point t, 

the system maintains a classifier, 𝐻𝑡, learned from a set of past 

training datasets 𝐷𝑡  = {𝐷1, 𝐷2, … , 𝐷𝑡}  labeled with 

corresponding classes (labels) 𝑌𝑡 = {𝑙1, 𝑙2, …, 𝑙𝑡}, where every 

example in each dataset 𝐷𝑖  𝐷𝑡 is labeled with the same class 

𝑙𝑖 𝑌𝑡. 𝐻𝑡 is able to classify each test instance to either one of 

the known classes in 𝑌𝑡  or the unknown class 𝑙0 , which 

represents all new or unseen topics. In this case, 𝐻𝑡 is said to 

perform open world classification. Once enough training data 

𝐷𝑡+1 has been collected for an unknown topic/class 𝑙𝑡+1 by the 

user, 𝐻𝑡  is updated to cover the new class 𝑙𝑡+1  to produce a 

new classifier 𝐻𝑡+1  and 𝐻𝑡+1  is also able to perform open 

world classification. We want to build 𝐻𝑡+1  upon 𝐻𝑡  with 
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minimal efforts and without re-training the entire system. 

We now explain why our classification is called open world 

classification. Classic supervised learning assumes that all the test 

classes have been seen in the training phase and each test instance 

can only be classified into one of the classes used in training. We 

say that it makes the closed world assumption. In contrast to this 

closed world assumption, we allow test instances from unknown 

classes to appear (not seen during training) and our classifier is 

able to detect such unknown/unseen classes of documents, which 
is why we call the new paradigm open world classification.  

Let us now explain why cumulative learning is a form of lifelong 

machine learning, which is defined as follows [9]:  

Definition (Lifelong Machine Learning (LML)): At any time t, 

the learner has performed a sequence of t learning tasks, 𝑇1 , 

𝑇2, …, 𝑇𝑡 , and has accumulated the knowledge K learned in 

these past tasks. At time t+1, it is faced with a new learning 

task 𝑇𝑡+1. The learner is able to make use of the past knowledge 

K to help perform the new learning task 𝑇𝑡+1.  

Cumulative learning is a form of lifelong machine learning 

because we can treat task 𝑇𝑡+1 as the task of learning a multi-class 

classifier 𝐻𝑡+1 using all the past and the current data, 𝐷1, 𝐷2, …, 

𝐷𝑡, 𝐷𝑡+1 labeled with corresponding classes, 𝑙1, 𝑙2, …, 𝑙𝑡, 𝑙𝑡+1, as 

well as the past classifier 𝐻𝑡 as the knowledge to help train 𝐻𝑡+1.  

Recently, in the field of computer vision researchers studied the 

problem of allowing unseen classes of images in the test set, 

which they call open set recognition [18, 31, 32]. We choose to 

call it open world classification (or simply open classification) 

because of the closed world assumption made by classic 

supervised learning. A framework is also proposed from the risk 

management perspective [31]. Classic learners define and 

optimize over the expected empirical risk, which is measured 

based on errors made on the training data during learning. For 

open world classification or learning, it is crucial to consider how 

to extend the model to capture the risk of the unknown by 

preventing the model from over-generalizing. In order to tackle 

this problem, [31] introduced the concept of open space risk and 

formulated an extension of existing one-class and binary SVMs to 

address the open world classification problem. However, their 

proposed method is weak as the positively labeled open space is 

still an infinite area. We have addressed this problem in [14], 

which we adopt for this work, and extend it further to cumulative 

learning. 
 

Following the formulation of open world learning, we discuss a 

solution for detecting new classes of documents by reducing the 

open space risk while balancing the empirical risk in learning. 

Intuitively, given a target class of documents, the positive open 

space for the class is considered to be the space that is sufficiently 

far from the center of the target class documents. In the multiclass 

classification setting, each of the classes can be regarded as a 

target class and should be surrounded by a ball covering the target 

class area, while any document falling outside of the balls of all 

target classes is considered belonging to unseen/new classes. To 

build an open world classifier, a recent learning technique called 

center-based similarity space learning (CBS learning), which was 

originally proposed by Fei and Liu [13] for solving a negative 

covariate shift problem, is employed to give an initial solution to 

the proposed open space formulation, which significantly reduces 

the open space risk compared to that of [31].  

Being able to detect unseen classes/topics is still insufficient for a 

multiclass classifier to handle the growing number of topics of 

interest. We need to incorporate the detected new classes into the 

system with minimal effort. A naive approach to solving this 

problem is to re-train the entire system including the new class of 

data from scratch. However, such a solution is only feasible if the 

number of classes is small. It is inappropriate when the number of 

classes grows very large.  

In this work, we propose a new learning strategy, which is 

inspired by the process of human concept learning, to make an 

attempt to tackle the cumulative learning problem. Human beings 

are exposed to new concepts all the time. One particular way we 

learn a new concept is by searching from the already known 

concepts, looking for similar ones, and then trying to find the 

difference between these known concepts and the new one 

without using all the known concepts. For example, assume we 

have already learned concepts like “movie”, “furniture,” and 

“soccer”. Now we are presented with the concept of “basketball” 

and its documents. We find that “basketball” is similar to 

“soccer”, but very different from “movie” and “furniture”. Thus 

we just need to accommodate the new concept “basketball” into 

our old knowledge base by focusing on distinguishing the 

“basketball” and “soccer” concepts. We do not need to worry 

about the difference between “basketball” and “movie” or 

“furniture”, because the existing perception or concepts of 

“movie” and “furniture” can easily tell that documents from 

“basketball” do not belong to either of them. Based on the above 

possible human learning process, the proposed learning process 

adds a new class of documents to the system that only disturbs a 

small subset of the past classes. 

As we indicated above, cumulative learning is related to lifelong 
learning [5, 26, 35, 39] because we aim to perform learning 
continuously to make the system more and more knowledgeable, 
which is analogous to human learning. However, it is different 
from current lifelong machine learning [35] and transfer learning 
[25] methods because existing work in these areas mainly focuses 
on knowledge transfer, i.e., how to make use of the past data or 
knowledge to help new learning tasks. None of the methods is 
able to detect unseen classes or incrementally update an existing 
classifier, which make cumulative learning require a different type 
of algorithms. Our problem is also different from existing research 
in online learning and incremental learning [1, 6, 42]. Online 
learning aims to handle new instances of the known classes, while 
we focus on handling unseen/new classes of documents by 
recognizing them and updating the existing classification system. 

In summary, this paper makes the following contributions:  

1.  It proposes the new learning problem of cumulative learning, 

which presents a new form of lifelong learning. It involves 

two unique challenges, detecting and learning new knowledge 

(classes or concepts) over time so that the system becomes 

more and more knowledgeable. The first challenge is called 

open world classification and the CBS learning framework is 

adopted to solve the problem in a similarity space.  

2.  It proposes a learning strategy for cumulatively adding new 

classes of documents into the existing classification system 

without requiring re-training the whole system from scratch.  

3.  Extensive experiments show that the proposed method gives 

superior results compared to state-of-the-art baselines in terms 

of both classification accuracy and learning efficiency. 

2. Related Work 
Our work addresses an issue that is related to and has received 

attention from various machine learning paradigms such as open 

set recognition, lifelong learning, transfer learning, multi-task 

learning, and online learning. We compare with them below.  



2.1 Open World Classification 
Compared to research on multiclass classification with closed 

world assumptions, there is relatively less work on open world 

classification. In this subsection, we review related work on one-

class classification, SVM decision score calibration, open set 

recognition, and others. 

One-class classifiers, which only rely on positive training data, are 

natural starting solutions to the open world multiclass 

classification task. One-class SVM [33] and SVDD [37] are two 

representative one-class classifiers. One-class SVM treats the 

origin in the feature space as the only member of the negative 

class, and maximizes the margin with respect to it. SVDD tries to 

place a hypersphere with the minimum radius around almost all 

the positive training points. [22] demonstrated that SVDD and 

one-class SVM are comparable when the Gaussian kernel is 

applied. However, as no negative training data is used, one-class 

classifiers have trouble producing good separations, leading to 

poor results. 

This work is also related to using thresholded probabilities for 

rejection. As the decision score produced by SVM is not a 

probability distribution, several techniques have been proposed to 

convert a raw decision score to calibrated probabilistic outputs [2, 

12, 17, 27, 41]. Usually a parametric distribution is assumed for 

the underlying distribution, and raw scores are mapped based on 

the learned model. A variation of the approach in [27] is the most 

widely used probability estimator for SVM score calibration. It 

fits a sigmoid function to the SVM scores during training. 

Provided with a threshold, a test instance can be rejected if its 

highest probability of belonging to any class is lower than the 

threshold. 

Recently, researchers in computer vision [18, 31, 32] made 

attempts to solve open world classification and proposed the 

concept of open set recognition for visual learning. [31] 

introduced the concept of open space risk, and defined it as a 

relative measure. The proposed model reduced the open space risk 

by replacing the positively labeled half-space of a binary linear 

classifier with a positive region bounded by two parallel 

hyperplanes. While the positively labeled region for a target class 

is reduced compared to the half-space in the traditional linear 

SVM, its open space risk is still infinite. In [18], the authors 

proposed to use Extreme Value Theory (EVT) to estimate the 

unnormalized posterior probability of inclusion for each class by 

fitting a Weibull distribution over the positive class scores from a 

pre-trained 1-vs-rest multiclass RBF SVM classifier. [32] 

introduced the Compact Abating Probability (CAP) model, which 

explained how thresholding the probabilistic output of RBF One-

class SVM manages the open space risk. Using the probability 

output from RBF one-class SVM as a conditioner, the authors 

combined RBF One-class SVM with a Weibull-calibrated SVM 

similar to the one in [18]. For both methods [18, 32], decision 

thresholds need to be chosen based on the prior knowledge of the 

ratio of unseen classes in testing, which is a weakness of the 

methods.  

[11] proposed Exploratory Learning in the multiclass semi-

supervised learning (SSL) setting. In this work, an “exploratory” 

version of expectation-maximization (EM) is proposed to extend 

traditional multiclass SSL methods, which deals with the scenario 

when the algorithm is given seeds from only some of the classes 

in the data. It automatically explores different numbers of new 

classes in the EM iterations. The underlying assumption is that a 

new class should be introduced to hold an instance 𝑥 when the 

probability of 𝑥  belonging to the existing classes is close to 

uniform. This is quite different from our work. First, it works in 

the semi-supervised setting and assumes that test data is available 

during training. Second, it only focuses on improving accuracy on 

the classes with seed examples. Our work in [14] dealt with the 

problem using an entirely different approach adopted from [13]. 

However, these works did not propose or deal with cumulative 

learning, which is important for an intelligent system as it allows 

the system to learn more and more and become more and more 

knowledgeable. 

2.2 Lifelong Machine Learning 
Our work is related to lifelong machine learning [5, 26, 35, 39]. In 

the context of supervised learning, early work on lifelong learning 

focused on transferring invariances in neural networks. For 

example, memory-based and explanation-based neural networks 

(EBNN) based methods were proposed in [38, 39], which 

transferred knowledge across multiple learning tasks. Their 

learning task was similar to ours, but they mainly focused on 

helping the classification of the new class. Also, their methods 

were also inefficient. [36] made some improvements in terms of 

efficiency to those in [38, 39], but the framework was similar. 

[30] proposed the Efficient Lifelong Learning Algorithm (ELLA). 

[29] further enhanced ELLA through actively selection of the next 

task to learn. However, each of ELLA’s learning task is 

independent of others, i.e., each task’s learning and testing are not 

related to others. Thus, it solves a different problem. This is also 

the case for the lifelong supervised learning in [9]. Clearly, none 

of previous works detects new or unseen classes. Our work is 

complementary to existing research. Lifelong learning has also 

been conducted in reinforcement learning [5], and unsupervised 

topic modeling [8, 9], which use the knowledge extracted from 

past documents of many domains to improve topic discovery in 

future tasks. 

2.3 Online and Incremental Learning 
Online learning and incremental learning [1, 6, 10, 15, 20, 42] 

mainly aim at handling new instances of known classes. In both 

scenarios, new data instances belonging to the known classes and 

their class labels are incrementally revealed. The goal of online 

learning is to make a sequence of accurate predictions in an online 

manner given the knowledge of the correct answers to previous 

prediction tasks. However, our problem has a different setting, in 

which a new class of documents arrives together and online 

updating is not required. We also detect new classes and update 

the learned classifier without re-training the entire system. 

Although [40] allows new classes of data to be incrementally 

added, the paper does not detect new/unseen classes, which makes 

the system less applicable in real-world applications. 

3. Cumulative Learning 
This section presents the proposed learning strategy and process 

to solve the cumulative learning problem. As discussed in the 

introduction section, the proposed learning process is similar to 

that of human concept learning. It cumulates knowledge and uses 

the cumulated knowledge to help update the existing classification 

model and to accommodate the new class, so that the new 

classification model can classify both existing classes and the new 

class, as well as detecting unseen classes constantly. The proposed 

method is based on the 1-vs-rest strategy of SVM. This section 

focuses on the overall algorithm and how to incorporate the new 

class with minimum effort in training by exploiting the existing 

classification model and the past data as the prior knowledge. The 

underlying learning method will be discussed in more details in 

Section 4. 



3.1 Training a Cumulative Classification 

Model  
We already have an open world classification system at time 𝑡 

with its classification model 𝐻𝑡 = {ℎ1, ℎ2, … , ℎ𝑡} built for the past 

𝑡 classes 𝑌𝑡 = {𝑙1, 𝑙2, … , 𝑙𝑡} using their corresponding training sets 

𝐷𝑡 = {𝐷1, 𝐷2, … , 𝐷𝑡}. At time 𝑡 + 1, the new dataset 𝐷𝑡+1 of class 

𝑙𝑡+1 arrives, and the classification model 𝐻𝑡 needs to be updated 

or extended to produce a new classification model 𝐻𝑡+1. We note 

that each ℎ𝑖 in 𝐻𝑡 or 𝐻𝑡+1 is a 1-vs-rest SVM classifier built using 

the CBS learning method in [13] for class 𝑙𝑖  treating 𝑙𝑖  as the 

positive class. We will discuss CBS learning in the next section.  

Specifically, the learning system goes through the following two 

steps to update the current state of the classification system 𝐻𝑡  to 

build a new one 𝐻𝑡+1 that can classify test data from all classes in 

{𝑙1, 𝑙2, … , 𝑙𝑡, 𝑙𝑡+1} as well as detect unseen classes of documents 

denoted by 𝑙0. 

1.  Searching for a set of similar classes 𝑆𝐶 that are similar to the 

new class 𝑙𝑡+1. 

2.  Learning to separate the new class 𝑙𝑡+1 from the classes in 𝑆𝐶. 

In order to perform the first step, we need a way to measure the 

similarity between classes. There are many possible ways. One 

way is to perform clustering every time when a new class arrives 

and see which cluster the new class falls in. However, it is 

difficult to set the number of clusters as the number of classes 

changes over time. It is also hard to know how the classes in the 

same cluster are related in the overall classification problem. 

Another way to measure the similarity between classes is by 

computing the similarity between the centers of each class of 

documents. However, this approach does not know the spread of 

each class of documents and again, it is not clear how this 

distance is related to the final classification.  

In this work, we propose to quantify the similarity between a new 

class 𝑙𝑡+1 and the existing ones 𝑙1, 𝑙2, … , 𝑙𝑡 by running each of the 

1-vs-rest binary classifiers in 𝐻𝑡 = {ℎ1, ℎ2, … , ℎ𝑡}  to classify 

instances in 𝐷𝑡+1 . Those past classifiers that accept (classify as 

positive) a certain number/percentage 𝜆𝑠𝑖𝑚 of instances from 𝐷𝑡+1 

are regarded as similar classes and are denoted by 𝑆𝐶 . This 

method is intuitive because if a past classifier ℎ𝑖 classifies many 

instances in 𝐷𝑡+1 as positive, it means that the two classes of data 

are close to each other and need to be separated subsequently.  

Separating the new class 𝑙𝑡+1 and classes in 𝑆𝐶 actually involves 

two steps:  

1. Building a binary classifier ℎ𝑡+1 for the new class 𝑙𝑡+1. It is 

intuitive to build ℎ𝑡+1 for class 𝑙𝑡+1, using 𝐷𝑡+1 as the positive 

training data and the data of the classes in 𝑆𝐶 as the negative 

training data. 

2. Updating the existing classifiers for the classes in 𝑆𝐶 . The 

reason for the updating is that the addition of class 𝑙𝑡+1 

confuses those classifiers in 𝑆𝐶.  To re-build each existing 

classifier ℎ𝑖, the system needs to use the original negative data 

employed to build the existing classifier ℎ𝑖 and the new data 

𝐷𝑡+1 as the new negative training data. We still need the old 

negative training data because we want the new classifier still 

to be able to separate class 𝑙𝑖 from those old classes.   

The detailed algorithm is given in Algorithm 1. Line 1 initializes 

𝑆𝐶 to the empty set. Line 3 initializes the variable 𝐶𝑇 (for count) 

to record the number of instances in 𝐷𝑡+1  that are classified as 

positive by classifier ℎ𝑖. Lines 4-9 use ℎ𝑖 to classify each instance 

in 𝐷𝑡+1 and record the number of instances that are classified (or 

accepted) as positive by ℎ𝑖. Lines 10-12 check whether there are 

too many instances in 𝐷𝑡+1 that have been classified as positive 

by ℎ𝑖 to render class 𝑙𝑖 as similar to class 𝑙𝑡+1. 𝜆𝑠𝑖𝑚 is a threshold 

controlling how many percent of instances in 𝐷𝑡+1  should be 

classified to class 𝑙𝑖  before considering 𝑙𝑡+1  as similar/close to 

class 𝑙𝑖. Lines 14-17 build a new classifier ℎ𝑡+1 and update all the 

classifiers for classes in 𝑆𝐶. 

In summary, the proposed learning process uses the set 𝑆𝐶  of 

similar classes to the new class 𝑙𝑡+1 to control both the number of 

classifiers need to be built/updated at time 𝑡 + 1  and also the 

number of negative instances used in building the new classifier 

ℎ𝑡+1. It thus greatly reduces the time compared to that of training 

a 1-vs-rest multiclass classifier using all the data. However, 

running existing classifiers to classify instances from the new 

class will cause some overhead. But the overhead is small 

compared to the training time needed when the number of classes 

is very large. 

Combining the cumulative learning process proposed in this 

section and the cbsSVM learning method discussed in Section 4 as 

the underlying learner, our system (which is able to handle both 

challenges in cumulative learning) is called CL-cbsSVM (CL 

stands for Cumulative Learning). 

3.2 Testing the Cumulative Classification 

Model 
To test the new classification model 𝐻𝑡+1 = {ℎ1, ℎ2, … , ℎ𝑡, ℎ𝑡+1}, 

we follow the standard technique of combining the set of 1-vs-rest 

binary CBS classifiers in 𝐻𝑡+1 to perform multiclass classification 

with a rejection option for the unknown. As output scores from 

different SVM classifiers are not comparable, the SVM scores for 

each classifier are first converted to probabilities based on a 

variant of Platt’s [27] algorithm, which is supported in LIBSVM 

[7]. Let 𝑃(𝑦|𝐱) be a probabilistic estimator, where 𝑦 ∈ 𝑌𝑡+1(=
{𝑙1, 𝑙2, … , 𝑙𝑡, 𝑙𝑡+1}) is a class label and 𝐱 is the feature vector of a 

test document. Let 𝜃 be the decision threshold (we use 0.5) and 

 𝑦∗ be the final predicted class for 𝐱. Recall we use 𝑙0 to represent 

all possible unknown classes. The classification on the test 

document 𝐱 is done as follow:  

Algorithm 1. Cumulative Learning 
 

Input: Classification model Ht = {h1, h2,…, ht} till time t 
           Past dataset {D1, D2,…, Dt} till time t 

           New dataset Dt+1 at time t+1 

           Similarity threshold λsim 

Output: Updated classification model Ht+1 = {h1,…, ht, ht+1} 
 

1:    SC = empty; 

2:    for each classifier hi ∈ Ht do  

3:       CT = 0; 

4:       for each test instance dj ∈ Dt+1 do 

5:          class =  hi (dj) // classify doc dj using hi 

6:          if class  = 𝑙𝑖 then // wrongly classified 

7:             CT = CT + 1 

8:          end-if 

9:       end-for 

10:     if CT > λsim * |Dt+1| then 

11:        SC = SC ∪ {𝑙𝑖} 

12:     end-if 

13:   end-for 

14:   build ht+1 and add to Ht+1 

15:   for each hi of class 𝑙𝑖 ∈ SC do 

16:      update hi 

17:   end-for 

18:   return H t+1 

 



𝑦∗ = {
𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌𝑡+1𝑃(𝑦|𝐱) 𝑖𝑓 𝑃(𝑦∗|𝐱) ≥ 𝜃

𝑙0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The idea is that for the test instance 𝐱 , each binary classifier 

ℎ𝑖 ∈ 𝐻𝑡+1 is used to produce a probability 𝑃(𝑙𝑖|𝐱). If none of the 

probabilities is greater than 𝜃 (= 0.5), the document represented 

by 𝐱  is regarded as unseen or belonging to 𝑙0 ; otherwise it is 

classified to the class with the highest probability.  

4. Open Learning for Unseen Class Detection 
This section gives an overview of the CBS learning method given 

in [13]. It performs binary classification focusing on identifying 

positive class documents and has a superior capability of detecting 

unseen classes or classifying them as not positive. It provides the 

base classification method for our cumulative learning. Below, we 

first discuss the open space risk management strategy in [14], and 

then apply an SVM-based CBS learning method [13] as a solution 

towards the open space risk management strategy. Although CBS 

learning only performs binary classification with the positive class 

as the class of interest, applying the 1-vs-rest method described in 

Section 3.2 gives us a multiclass CBS classification model, which 

is called cbsSVM in [14].  

4.1 Open space risk formulation 
Consider the risk formulation for open world classification by 

Scheirer et al. [31], where apart from empirical risk, there is risk 

in labeling the open space (space away from positive training 

examples) as “positive” for any unknown class. Due to the lack of 

information of a classification function on the open space, open 

space risk is approximated by a relative Lebesgue measure [34]. 

Let 𝑆𝑜 be a large ball of radius 𝑟𝑜 that contains both the positively 

labeled open space 𝑂 and all of the positive training examples; 

and let ℎ𝑦 be a measurable classification function where ℎ𝑦(𝐱) =

1 for recognition of class 𝑦 of interest and ℎ𝑦(𝐱) = 0 otherwise. 

In our case, 𝑦 is simply any class of interest 𝑙𝑖. 

In [14], 𝑂  is defined as the positively labeled area that is 

sufficiently far from the center of the positive training examples. 

Let 𝐵𝑟𝑦
(𝑐𝑒𝑛𝑦) be a closed ball of radius 𝑟𝑦  centered around the 

center of positive class 𝑦 (𝑐𝑒𝑛𝑦), which, ideally, tightly covers all 

positive examples of class 𝑦 only; 𝑆𝑜 be a larger ball 𝐵𝑟𝑂
(𝑐𝑒𝑛𝑦) 

of radius 𝑟𝑜 with the same center 𝑐𝑒𝑛𝑦. Let classification function 

ℎ𝑦(𝐱) = 1 when 𝐱 ∈ 𝐵𝑟𝑂
(𝑐𝑒𝑛𝑦), and ℎ𝑦(𝐱) = 0 otherwise. Also 

let 𝑞 be the positive half of the space defined by a binary decision 

hyperplane Ω  obtained from a SVM classifier trained using 

positive and negative training examples. We also define the size 

of ball 𝐵𝑟𝑂
 be bounded by Ω, i.e., 𝐵𝑟𝑂

⋂ 𝑞 = 𝐵𝑟𝑂
. Open space is 

defined as, 

𝑂 = 𝑆𝑜 − 𝐵𝑟𝑦
(𝑐𝑒𝑛𝑦) 

where radius 𝑟𝑂 of 𝑆𝑜 needs to be determined during learning for 

each known positive class.  

This open space formulation greatly reduces the open space risk 

compared to those of traditional SVM and 1-vs-Set Machine in 

[31]. Traditional SVM uses classification function ℎ𝑦
𝑆𝑉𝑀(𝐱) = 1 

when 𝐱 ∈ 𝑞 , and its positive open space being approximately 

𝑞 − 𝐵𝑟𝑦
(𝑐𝑒𝑛𝑦) , which is only bounded by the SVM decision 

hyperplane Ω. For 1-vs-Set Machine in [31], it has classification 

function ℎ𝑦
1−𝑣𝑠−𝑠𝑒𝑡(𝐱) = 1  when 𝐱 ∈ 𝑔 , where 𝑔  is a slab area 

with thickness 𝛿  bounded by two parallel hyperplanes Ω and Ψ 

( Ψ ∥  Ω ) in 𝑞 , and its positive open space is approximately 

𝑔 − 𝐵𝑟𝑦
(𝑐𝑒𝑛𝑦). Given open space formulations of the traditional 

SVM and 1-vs-Set Machine, we can see that both methods label 

an unlimited area as positively labeled space, while the 

formulation in [14] reduces it to a bounded spherical area. 

Given the above open space definition, the question is how to 

estimate 𝑆𝑜 (or the radius 𝑟𝑂) for the positive class. The center-

based similarity space (CBS) learning proposed by Fei and Liu 

[13] is suitable for the purpose, which was originally proposed to 

deal with negative covariate shift. Below, we introduce CBS 

learning and briefly discuss why it is suitable for the new 

problem.  

4.2 Center-Based Similarity Space Learning 
Let 𝐷 = {(𝑑1, 𝑦1), (𝑑2, 𝑦2), … , (𝑑𝑛 , 𝑦𝑛)} be the set of training 

examples, where 𝑑𝑘  is a document and 𝑦𝑘 ∈ {1, −1} is its class 

label. In traditional classification, each 𝑑𝑘  is represented with a 

feature vector 𝐱𝑘 , which we call a document space vector (ds-

vector), and 𝐷  is directly used to build a binary classifier. 

However, CBS learning transforms each ds-vector 𝐱𝑘 (no change 

to its class label) to a center-based similarity space feature vector 

(CBS vector) 𝐜𝐛𝐬-𝐯𝑘 . Each feature in 𝐜𝐛𝐬-𝐯𝑘  is a similarity 

between the center 𝐜𝑗  of the positive class documents and 𝐱𝑘. A 

classifier can be build based on CBS vector representations of 

documents in 𝐷, i.e., each 𝐱𝑘 is replaced with 𝐜𝐛𝐬-𝐯𝑘 . 

To make CBS learning more effective by generating more 

similarity features, we can use multiple document space 

representations or feature vectors to represent each document 𝑑𝑘 

and also employ multiple similarity measures. The detailed 

technique is as follows. 

Instead of using only one ds-vector 𝐱𝑘  to represent a document 

𝑑𝑘 , we use a set 𝑅𝑘  of ds-vectors 𝑅𝑘 = {𝒙1
𝑘 , 𝒙2

𝑘 , … , 𝒙𝑝
𝑘} , where 

each ds-vector 𝒙𝑗
𝑘 denotes one document space representation of 

𝑑𝑘, e.g., unigram or bigram. Due to multiple representations, we 

have multiple centers also for the positive class, 𝐶 =

{𝒄1, 𝒄2, … , 𝒄𝑝}, where each 𝐜𝑗  corresponds to one document space 

representation .  We use the Rocchio method in information 

retrieval [19, 23] to compute 𝒄𝑗  (a vector) using the corresponding 

ds-vectors of all positive and negative training documents.  

𝐜𝑗 =
𝛼

|𝐷+|
∑

𝐱𝑗
𝑘

‖𝐱𝑗
𝑘‖

𝑑𝑘∈𝐷+

−
𝛽

|𝐷 − 𝐷+|
∑

𝐱𝑗
𝑘

‖𝐱𝑗
𝑘‖

𝑑𝑘∈𝐷−𝐷+

  

where 𝐷+  is the set of positive documents and |.| is the size 

function. 𝛼 and 𝛽 are parameters. It is reported in [4] that using tf-

idf representation, 𝛼 = 16  and 𝛽 = 4  usually work quite well. 

The subtraction is applied to reduce the influence of those terms 

that are not discriminative (i.e., terms appearing in both classes). 

Based on 𝑅𝑘  for document 𝑑𝑘  (either in the training and testing 

set) and the computed set of centers 𝐶 (computed using only the 

training data), we can transform a document 𝑑𝑘 from its document 

space representations 𝑅𝑘  to a center-based similarity vector 

𝐜𝐛𝐬-𝐯𝑘 by applying a similarity function 𝑆𝑖𝑚 on each element 𝐱𝑗
𝑘 

of 𝑅𝑘 and its corresponding center 𝐜𝑗  in 𝐶. 

𝐜𝐛𝐬-𝐯𝑘 = 𝑆𝑖𝑚(𝑅𝑘 , 𝐶) 

𝑆𝑖𝑚 can contain a set of similarity measures. Each measure 𝑚 is 

applied to 𝑝  document representations in 𝑅𝑘  and their 

corresponding centers in 𝐶 to generate 𝑝 similarity features (cbs-

features) in 𝐜𝐛𝐬-𝐯𝑘. 



For ds-features, unigrams and bigrams with tf-idf weighting were 

used as two document representations. The similarity measures 

are the five ones described in [13], which produce 10 CBS 

features to represent a document in the CBS space. Based on the 

CBS space representation, we can run SVM to produce a CBS 

classifier ℎ𝑦.  

We now briefly explain why CBS learning gives a good estimate 

to 𝑆𝑜 . Due to using similarities as features, CBS learning 

generates a boundary to separate the positive and negative training 

data in the similarity space. As a similarity has no direction (or it 

covers all directions), the boundary in the similarity space is 

essentially a “ball” encompassing the target/positive class training 

data in the original document space. The “ball” is an estimate of 

𝑆𝑜 based on those similarity measures. The main assumption by 

the CBS learning is that the target class data should be unimodal 

in order for the “ball” not to cover too much open space. 

5. Evaluation 
In this section, we evaluate our proposed system and compare it 

with extensive baselines in terms of both classification results and 

computational speed. 

5.1 Datasets 
To evaluate the proposed cumulative learning method, we need a 

fully labeled document collection with a large number of classes. 

One kind of dataset that naturally comes with a large number of 

classes is product reviews, which contains reviews for different 

product categories. Note that although we use this product reviews 

collection, we do not perform sentiment classification. Instead, we 

still perform the traditional topic based classification. That is, 

given a review, the system has to decide what type of product the 

review is about. We use Amazon product reviews of 100 domains 

(or types of products) that were used in [8] as one dataset. Each 

domain contains 1000 reviews. We also perform evaluation using 

another publicly available dataset 20-newsgroup. For 20-

newsgroup, we use the “18828'” version, which contains 20 non-

overlapping classes, in total 18828 text documents with no 

duplicates. For each class/domain in both datasets, we randomly 

keep 70% of the documents for training and the rest 30% for 

testing. 

For experiments in this paper, we do not perform any over-

sampling or under-sampling for all methods for two reasons. First, 

as we will discuss later, our experiments have multiple settings 

that use different number of domains, it is hard to select the 

optimal sampling number every time, and it is also not the focus 

of our paper. Secondly, since this strategy applies to all the 

methods, we do not bias against any one. 

5.2 Baselines 
Our supervised learning baselines can be classified into two 

categories depending on the strategy they use given new classes of 

documents. All the supervised learning baselines discussed below 

except CL-1-vs-rest-SVM are based on rebuilding strategy. CL-1-

vs-rest-SVM is a variation of our proposed CL-cbsSVM, which is 

able to cumulatively update the system given a new class of 

documents. For more complete evaluation, apart from supervised 

learning baseline methods, we also include a semi-supervised 

learning method, called Exploratory-EM, as a baseline because it 

allows new classes to be created during the EM iterations. All the 

baseline methods are listed below.  

1-vs-Rest multiclass SVM (1-vs-rest-SVM). This is the standard 

1-vs-rest multiclass SVM with Platt Probability Estimation [27], 

which only supports rebuilding strategy. It works in the same way 

as cbsSVM [14] except that it uses the document space 

classification. This baseline is based on the linear SVM with 

probabilistic outputs in LIBSVM (version 3.20) [7]. Similar to 

cbsSVM, for open world classification, decision threshold 𝜃 = 0.5 

is used for detecting documents from new classes (similar to that 

in Section 3.2). We use the linear kernel as many researchers have 

shown that linear SVM performs the best for text classification 

[19]. We also tried other kernels, but they were poorer.   

1-vs-Set Machine (1-vs-set-linear). This is the 1-vs-Set Machine 

in [31], which only supports rebuilding strategy. We use all the 

default parameter settings in the original paper. That is, the near 

and far plane pressures are set at 𝑝𝐴 = 1.6  and 𝑝Ω = 4 

respectively; regularization constant 𝜆𝑟 = 1 and no explicit hard 

constraints are used on the training error (𝛼 = 0, 𝛽 = 1). 

W-SVM (wsvm-linear and wsvm-rbf). These two baselines 

combine RBF one-class SVM with binary SVM [32]. Both linear 

kernel and RBF kernel are tested. For thresholding the output, two 

parameters 𝛿𝜏  and 𝛿𝑅  are required. We set 𝛿𝜏 = 0.001, which is 

used to adjust what data the one-class SVM considers to be 

remotely related. 𝛿𝑅 is a required decision threshold with the same 

effect as our 𝜃, which is not only for W-SVM, but also for the 

next baselines (PI-SVM). Two ways of setting 𝛿𝑅 were suggested 

by the paper authors. We set it as the prior probability of the 

number of unseen classes during evaluation (testing). An 

alternative way is to set it based on an openness score computed 

using the number of training and testing classes. We tried both 

methods and found the former gave better results. 

PI-SVM (Pi-svm-linear and Pi-svm-rbf). These two baselines are 

from [18], which estimate the probability of inclusion based on 

output of binary SVMs with two kernels. As stated above, the 

threshold 𝛿 is set as the prior probability of the number of unseen 

classes in test. As both W-SVM and PI-SVM need pre-trained 1-

vs-rest SVM and the step of calibrating SVM scores by fitting 

WeiBull distributions, both of these baselines only support 

rebuilding strategy given new classes of documents. 

Cumulative Learning with 1-vs-Rest SVM (CL-1-vs-rest-SVM). 

Intuitively, the choice of the underlying learner should affect 

cumulative learning in both classification result and running time. 

As our proposed cumulative learning process is independent of 

the learner used in building the classifier, instead of using cbsSVM 

as the underlying learner, we apply 1-vs-rest-SVM in cumulative 

learning process (see Section 3.1) as another baseline. This is the 

only supervised learning baseline that supports cumulative update 

of the model without rebuilding the system from scratch given a 

new class of documents. 

Exploratory Seeded K-Means (Exploratory-EM). In [11], three 

well-known multiclass semi-supervised learning methods were 

extended under the exploratory EM framework. We compare with 

exploratory Seeded K-Means due to its superior performance on 

20newsgroup dataset. We also applied the criteria that work the 

best in the original paper for creating new classes and for model 

selection, i.e., the MinMax criterion and the AICc criterion. Note 

that Exploratory-EM works in the semi-supervised setting and 

uses both the training and test data as labeled and unlabeled data 

in learning. The algorithm supports two modes. The “explore” 

mode allows new classes to be created while the “semisup” mode 

does not. As more than one new class can be introduced during 

learning in the “explore” mode, for comparison we lump together 

all instances assigned to new classes as being rejected (unknown). 

In the experiments, we set the max number of iterations to be 50. 

Little changes in results are shown after 50 iterations. 



All documents use tf-idf term weighting scheme with no feature 

selection. Source code for baselines such as 1-vs-Set Machine1, 

W-SVM and PI-SVM2, and Exploratory learning3, is provided by 

the authors of their original papers. 

One thing to note is that we did not include any 1-vs-1 SVM 

based multiclass classification methods as baselines. This is 

because although a 1-vs-1 SVM technique for multiclass 

classification can support learning cumulatively by adding 𝑡 new 

1-vs-1 classifiers for the arrival of the (𝑡 + 1)𝑡ℎ class, none of the 

existing such methods can support open world classification. 

5.3 Experimental Settings 
Following that in [11, 18], we conduct open world cross-

validation style evaluation, holding out some classes in training 

and mixing them back during testing, and varying the number of 

training and test classes. Since for a given dataset, the number 

(percentage) of training classes 𝑚 and the number of test classes 𝑛 

can vary, there are many ways to generate a train-test partition. 

We report our results using 5 random train-test partitions for each 

combination of 𝑚 and 𝑛. In particular, we vary the number of test 

classes for Amazon ( 𝑛 = 50, 75, 100 ), and for 20-newsgroup 

(𝑛 = 20). For each of these choices on the number of test classes, 

we also select 𝑚 = 33%, 66% and 100% of the number of test 

classes for training. Varying the ratio of the number of training 

classes to test classes is to test the robustness of different systems 

in handling different “openness” of the problem. 

When 𝑚 = 100% of test classes are used for training, the problem 

reduces to the closed world classification. As most of our 

baselines such as those based on W-SVM and PI-SVM all use the 

prior knowledge to set decision threshold 𝛿𝑅 = 0 in the closed 

world setting, for fair comparison, we also set the threshold 𝜃 = 0 

for methods 1-vs-rest-SVM, CL-1-vs-rest-SVM, cbsSVM and CL-

cbsSVM. By doing this, we always assign a known class label to a 

test instance. For Exploratory-EM, we use the provided “semisup” 

mode instead of “explore” mode, which allows no new classes to 

be introduced in learning. 

For methods that support our proposed cumulative update (CL-

cbsSVM and CL-1-vs-rest-SVM), we build a 𝑘 -class classifier 

system starting from only 2 classes and cumulatively add new 

                                                                 

1 https://github.com/Vastlab/liblinear.git 
2 https://github.com/ljain2/libsvm-openset 
3 http://www.cs.cmu.edu/~bbd/ExploreEM_package.zip 

classes to the system one at a time till 𝑘 classes. We set 𝜆𝑠𝑖𝑚 =
2%  for all methods, as it gives the best results, and we will 

discuss its effect in section 5.4.2. For methods that use rebuilding 

strategy (1-vs-rest-SVM, 1-vs-set-linear, wsvm-linear, wsvm-rbf, 

Pi-svm-linea, and Pi-svm-rbf, cbsSVM), instead of simulating the 

whole process of building classifiers starting from 2 classes till 𝑘 

classes by rebuilding the system over and over again, we only 

build a 𝑘-class classifier once using all the 𝑘 classes to simulate 

what happens when the kth class arrives. 

For all the methods that use the RBF kernel, the parameters are 

tuned via cross validation on the training data, yielding ( 𝐶 =
5, 𝛾 = 0.2) for Amazon and (𝐶 = 10, 𝛾 = 0.5) for 20-newsgroup. 

5.4 Experimental Results and Comparison 
In this section, we first show the classification results of all the 

methods discussed in this paper on both the open world and 

closed world classification tasks. We then conduct running time 

analysis in section 5.4.2 to compare their efficiency. Finally, we 

perform qualitative analysis of the proposed cumulative learning.  

5.4.1 Classification Results 
In order to compare the classification results of different systems, 

for each train-test partition, we first compute precision, recall and 

F1 score for each class and then macro-average the results across 

all classes. Final results are given by averaging the results of 5 

random train-test partitions. We only show F1 scores in the paper. 

We show the results of different methods on open world 

classification in Table 1, which has four sets of results. More 

specifically, from left to right, we show results of different 

methods on Amazon data when the number of test classes 

𝑛 = 50, 75, 100 , and 20newsgroup data when 𝑛 = 20 . Within 

each sub-table, different columns list results of different methods 

when different proportions of test classes are used for training. 

From Table 1, we can clearly see that cbsSVM performs the best 

in all settings. Even when 100% of the test classes are used for 

training (the traditional closed world classification), cbsSVM still 

performs the best in all settings. Note that it does not use 

cumulative update of the system given new classes of documents. 

That is, it is based on the re-building strategy. 

We also notice that the proposed CL-cbsSVM (which is the 

cumulative version) almost always gives the second best results 

except that it loses to Pi-svm-rbf in one setting (𝑛 = 75, 𝑚 =
66% ), but better than all other methods based on rebuilding 

strategy. It is not surprising that CL-cbsSVM loses to cbsSVM, 

  m =33% 66% 100%  33% 66% 100%  33% 66% 100%  33% 66% 100% 

1-vs-rest-SVM  0.498 0.501 0.568  0.442 0.490 0.541  0.460 0.444 0.418  0.652 0.714 0.808 

cbsSVM  0.580 0.632 0.639  0.546 0.581 0.619  0.579 0.565 0.569  0.662 0.728 0.835 

CL-cbsSVM  0.549 0.610 0.623  0.511 0.574 0.616  0.536 0.552 0.549  0.644 0.716 0.820 

CL-1-vs-rest-SVM  0.352 0.511 0.472  0.488 0.440 0.424  0.352 0.373 0.394  0.417 0.632 0.713 

1-vs-set-linear  0.437 0.496 0.334  0.379 0.499 0.534  0.379 0.463 0.290  0.620 0.529 0.606 

wsvm-linear  0.506 0.537 0.335  0.454 0.535 0.547  0.465 0.499 0.309  0.597 0.606 0.710 

wsvm-rbf  0.347 0.382 0.398  0.278 0.357 0.544  0.264 0.289 0.095  0.417 0.643 0.812 

Pi-svm-linear  0.507 0.539 0.337  0.454 0.536 0.550  0.465 0.499 0.303  0.598 0.608 0.712 

Pi-svm-rbf  0.407 0.595 0.409  0.388 0.576 0.603  0.389 0.562 0.310  0.435 0.715 0.806 

ExploratoryEM  0.419 0.523 0.618  0.366 0.514 0.576  0.377 0.480 0.538  0.559 0.690 0.823 

 (a) amazon (n=50) (b) amazon (n=75) (c) amazon (n=100)     (d) 20newsgroup (n=20) 

Table 1. Macro-F1 scores for cumulative learning under open world classification 
 



because cbsSVM uses all the classes when building the classifier 

while CL-cbsSVM only rely on a small subset of previous classes. 

This leads to dramatic efficiency increase over cbsSVM as will be 

shown in Section 5.4.2. In contrast to CL-cbsSVM, the baseline 

method CL-1-vs-rest-SVM, which also supports learning 

cumulatively, performs poorly in both open world and closed 

world classification tasks. The main reason is that its underlying 

learner SVM learns in the document space. Due to this reason, 

SVM is not suitable in handling unseen classes, identifying 

similar domains, or learning effectively given similar classes 

during the cumulative learning process. 

We also notice that Exploratory-EM gives one of the best results 

in closed world classification tasks, but doesn’t perform very well 

in open world situations. We believe this is because Exploratory-

EM uses test data in learning, so it performs well in traditional 

semi-supervised learning tasks. But in open world classification 

tasks, as stated in [11], Exploratory-EM only focuses on the 

domains in which seed (training) documents are provided, which 

is not the case in our setting. 

5.4.2 Running Time Analysis 
Apart from classification results, we are also interested in 

evaluating the efficiency of each method. For comparison, we 

measure the time it takes for different systems to rebuild or 

cumulatively update when the last new class is presented in each 

setting. For methods based on the rebuilding strategy, this is 

equivalent to the total training time because we only build the 

system once using all the training classes. 

In this paper, all experiments are conducted using a single thread 

on a single 64-bit Windows server with Intel Xeon X5650 

2.67GHz CPU. At the same time, we are also aware that some of 

the experimented methods can be easily parallelized. For example, 

a single classifier can be trained on a different machine for 1-vs-

rest-SVM, 1-vs-set-linear and cbsSVM. And for methods based on 

the proposed cumulative learning process CL-cbsSVM and CL-1-

vs-rest-SVM, both detecting similar classes and building/updating 

existing classifiers can be sent to different machines to speed up 

the overall running time. However, we plan to leave this part of 

work to the future. 

For all the methods except Exploratory-EM, we implemented data 

preprocessing and transformation in Java, and called LIBSVM [7] 

or its extension packages for training. Summary of the running 

time of different methods is shown in Figure 2. The x-axis 

indicates experimental settings. For example, 50 * 0.33 indicates 

the setting in which 50 * 0.33 (=16) classes are used to train, and 

50 classes for testing. The reason we show it this way is because 

Exploratory-EM is a semi-supervised method, the number of test 

domains also affects its running time. The y-axis indicates running 

time (in seconds) to rebuild/update the system when the last 

domain (50 * 0.33 = 16th) arrives. Due to the wide range of 

running time of different algorithms, the y-axis (seconds) is in 

log2 scale. However, note that two reasons made the running time 

of Exploratory-EM algorithm not very comparable. Firstly, the 

Exploratory Learning package was written in Matlab. Secondly, 

it’s a semi-supervised method, which uses test data during 

learning. 

 
Figure 2. Running Time Summary 

 
Figure 3. Number of Classifiers Trained Each Time 
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From Figure 2, we are able to make several interesting 

observations. Firstly, apart from Exploratory-EM, cbsSVM takes 

longer time to run compared to other 1-vs-rest methods, which is 

due to the extra data preprocessing and transformation overhead 

and the use of RBF kernel. Secondly, our proposed CL-cbsSVM 

takes the shortest time to update especially when the number of 

classes is big. Due to the data transformation overhead, it is 

slightly slower than some other baselines when the number of 

classes is small. Thirdly, although also based on the updating 

strategy, running speed of CL-1-vs-rest-SVM is dramatically 

slower than that of CL-cbsSVM. This is because CL-1-vs-rest-

SVM uses SVM as the underlying learner and is not good at 

identifying new classes. Thus many existing classifiers 

misclassify many instances from the new class and get retrained. 

As the number of classes in the system increases over time, this 

effect is amplified further. Lastly, most of other algorithms based 

on 1-vs-rest SVM (1-vs-rest-SVM, 1-vs-set-linear, wsvm-linear, 

wsvm-rbf, Pi-svm-linear and Pi-svm-rbf) have similar running 

time and trend with the increase on the number of training 

classes/domains. 

Although the running time of different methods is affected by 

many factors, another way of comparing the efficiency of 

different approaches is to look at the number of classifiers they 

build/update each time a new class arrives starting from two 

classes to 𝑘 classes. In Figure 3, we show results for CL-1-vs-rest-

SVM, CL-cbsSVM as well as all methods based on the rebuilding 

strategy. The y-axis indicates the number of classifiers that were 

built/updated (in log2 scale) and x-axis is the arrival of the ith class. 

As all the methods based on the rebuilding strategy always build 𝑡 

classifiers when the tth new class is presented to the system, it is 

thus the upper bound for CL-1-vs-rest-SVM and CL-cbsSVM. To 

illustrate the effect of 𝜆𝑠𝑖𝑚  parameter, we vary the parameter 

𝜆𝑠𝑖𝑚 = 10%, 5%, 2% for both systems. But for the simplicity of 

the plot, we only show 𝜆𝑠𝑖𝑚 = 2% for CL-1-vs-rest-SVM, as both 

methods show similar trends by varying 𝜆𝑠𝑖𝑚. Since the sequence 

of arrival of new classes affects the results of our method, we 

average the numbers across 5 runs. 

From Figure 3, we can see that CL-1-vs-rest-SVM clearly builds 

more classifiers than CL-cbsSVM does when 𝜆𝑠𝑖𝑚 is set at 2% for 

both systems. By comparing different 𝜆𝑠𝑖𝑚  values for CL-

cbsSVM, we see that on average smaller 𝜆𝑠𝑖𝑚  leads to more 

classifiers being updated. This is intuitive because smaller 𝜆𝑠𝑖𝑚 

indicates being stricter on if an old classifier should be updated, 

while at the same time, smaller 𝜆𝑠𝑖𝑚 gives slightly better accuracy 

in classification, which is also intuitive. 

5.4.3 Qualitative Analysis of Cumulative Learning 
One way to gain more insight into our proposed cumulative 

learning system CL-cbsSVM is by looking at what existing classes 

are selected as the negative training data during its learning 

process in building/updating classifiers when new classes arrive. 

Intuitively, an effective and efficient learning algorithm should be 

able to select the minimal number of closely relevant domains 

instead of lots of irrelevant ones. For comparison, we also show 

the results from CL-1-vs-rest-SVM with the same class arrival 

order. Table 2 lists the negative classes picked by both methods 

for the 26th till the 30th new class when building the system 

cumulatively on the Amazon data. The second row shows the 

names of the new classes, and each column shows the chosen 

similar classes by each system. The reason we pick these five 

positions is because there are enough existing classes for a system 

to make mistakes, and not too many so that we can still list them 

in the paper. In fact, CL-1-vs-rest-SVM still picked too many 

classes beyond what we can enumerate in the paper. We also tried 

to manually identify those picked classes that we feel are 

unrelated, and they are marked in red. 

From the results shown in Table 2, we can easily tell that not only 

the number of negative training classes selected by CL-cbsSVM is 

much smaller, they are also more relevant than those picked by 

CL-1-vs-rest-SVM. 

6. Conclusion 
This paper proposed the new task of cumulative learning as a 

special form of supervised lifelong machine learning. Two unique 

challenges in cumulative learning are identified and presented, 

namely, the ability to detect data from unseen classes in the test 

set and the ability to selectively update the existing classification 

model without requiring rebuilding the whole system from 

scratch. We also proposed a cumulative learning strategy, which 

we believe is similar to human concept learning. It only requires 

updating part of the existing classification model whenever a new 

class of data arrives and needs to be covered by the classification 

model. As time goes by, the system keeps learning more and more 

in an efficient manner and becomes more and more 

knowledgeable. To deal with the first problem of open world 

classification, we adopted a recent solution based on center-based 

similarity space (CBS) learning, which is able to balance open 

space risk and empirical risk during training. Through extensive 

experiments by building classifiers for up to 100 consecutive 

classes, and comparing with strong baselines, we demonstrated 

the effectiveness and efficiency of the proposed approach. 
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