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ABSTRACT

The choice of the loss function is critical in extreme multi-
label learning where the objective is to annotate each data
point with the most relevant subset of labels from an ex-
tremely large label set. Unfortunately, existing loss func-
tions, such as the Hamming loss, are unsuitable for learning,
model selection, hyperparameter tuning and performance
evaluation. This paper addresses the issue by developing
propensity scored losses which: (a) prioritize predicting the
few relevant labels over the large number of irrelevant ones;
(b) do not erroneously treat missing labels as irrelevant but
instead provide unbiased estimates of the true loss func-
tion even when ground truth labels go missing under arbi-
trary probabilistic label noise models; and (c) promote the
accurate prediction of infrequently occurring, hard to pre-
dict, but rewarding tail labels. Another contribution is the
development of the PfastreXML algorithm (code available
from [1]) which efficiently scales to large datasets with up to
9 million labels, 70 million points and 2 million dimensions
and which gives significant improvements over the state-of-
the-art.

This paper’s results also apply to tagging, recommenda-
tion and ranking which are the motivating applications for
extreme multi-label learning. They generalize previous at-
tempts at deriving unbiased losses under the restrictive as-
sumption that labels go missing uniformly at random from
the ground truth. Furthermore, they provide a sound the-
oretical justification for popular label weighting heuristics
used to recommend rare items. Finally, they demonstrate
that the proposed contributions align with real world ap-
plications by achieving superior clickthrough rates on spon-
sored search advertising in Bing.

1. INTRODUCTION
Extreme multi-label learning addresses the problem of

learning a classifier that can annotate a data point with the
most relevant subset of labels from an extremely large label
set. Note that multi-label learning is distinct from multi-
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class classification which aims to predict a single mutually
exclusive label.

Extreme multi-label learning is an important research prob-
lem as it has many applications in tagging, recommendation
and ranking. For instance, there are more than a million
labels (tags) on Wikipedia and one might wish to build an
extreme multi-label classifier that tags a new article or web
page with the subset of most relevant Wikipedia labels. Sim-
ilarly, given a user’s buying or viewing history, one might
wish to build an extreme multi-label classifier that recom-
mends the subset of millions of items that the user might
wish to buy or view next. In general, one can reformulate
ranking and recommendation problems as extreme classifica-
tion tasks by treating each item to be ranked/recommended
as a separate label, learning an extreme multi-label classifier
that maps a user’s feature vector to a set of labels, and then
using the classifier to predict the subset of items that should
be ranked/recommended to each user.

Extreme multi-label learning differs from traditional multi-
label learning in a number of ways including the need for
logarithmic time prediction, training at an extreme scale
with millions of data points, features and labels, etc. Two
aspects are germane to this paper. First, every data point
has missing labels in its ground truth labelling since it is
impossible for annotators to go through millions of labels
and mark out the exact relevant subset. This has a fun-
damental impact on training, validation and performance
evaluation. Second, the notion of what constitutes a good
prediction changes when one moves from traditional to ex-
treme multi-label learning. In particular, due to relevant
label sparsity, it is more important to accurately predict rel-
evant labels than irrelevant ones. Furthermore, due to the
power law distribution over labels, infrequently occurring
tail labels have little training data and are harder to pre-
dict than frequently occurring ones but might also be more
informative and rewarding. As such, design choices made
for traditional multi-label learning might not apply at the
extreme scale.

One of the most critical design choices is that of the loss
function. It determines whether the training algorithm learns
a good solution, whether hyper-parameters are tuned appro-
priately, influences model selection and, perhaps most im-
portantly, ensures that performance evaluation on the test
set is aligned with real world application requirements.

This paper argues that traditional multi-label loss func-
tions are unsuitable for extreme multi-label learning even
though they have been used extensively thus far. For in-
stance, the popular Hamming loss [5, 7, 10, 11, 14, 19, 22,

http://dx.doi.org/10.1145/2939672.2939756


40, 43, 48] does not prioritize predicting the few relevant la-
bels over the millions of irrelevant ones, erroneously treats
missing labels as irrelevant, treats all relevant labels as be-
ing equally important and is biased due to missing ground
truth. As a result, extreme multi-label models optimized
and selected using traditional loss functions might perform
poorly when deployed in real world applications.

The primary contribution of this paper is to develop loss
functions suitable for extreme multi-label learning. It is ar-
gued that losses which focus on ranking relevant labels as
highly as possible are more suitable than the Hamming loss.
Propensity scored variants of such losses, including preci-
sion@k and nDCG@k, are developed and proved to give un-
biased estimates of the true loss function even when ground
truth labels go missing under arbitrary probabilistic label
noise models. Furthermore, it is shown that the propensity
models developed in this paper based on real world appli-
cations naturally promote the accurate prediction of infre-
quently occurring, difficult to predict, but rewarding tail
labels. This addresses both the limitations of traditional
multi-label loss functions as discussed in this paper. An-
other contribution is the development of the PfastreXML al-
gorithm that can scale to extreme multi-label datasets with
up to 9 million labels, 70 million training points and 2 mil-
lion dimensional features and achieves significant improve-
ments over the state-of-the-art. The code for PfastreXML
is available from [1].

This paper’s results generalize beyond extreme multi-label
learning and are also relevant to tagging, recommendation
and ranking. Previous attempts at developing unbiased loss
functions in these areas have been limited to square loss [17],
recall [38] and average discounted gain [26] under the restric-
tive assumption that ground truth labels go missing uni-
formly at random. Furthermore, the propensity models de-
veloped in this paper present a sound theoretical justification
for the popular label weighting heuristics [9, 12, 35, 39, 44,
47, 49, 51] used in the recommendation literature to promote
the prediction of rare and novel items. Finally, the fact that
higher clickthrough rates are achieved while ranking queries
for sponsored search advertising in Bing demonstrates that
the loss functions and algorithms proposed in this paper are
better aligned with real world applications.

2. RELATED WORK
Extreme multi-label learning algorithms typically follow

a tree [4, 34, 46] or an embedding based approach [5, 6, 7,
10, 11, 14, 18, 20, 22, 27, 32, 36, 43, 45, 48, 50]. While some
algorithms have been proposed for training with missing la-
bels [23, 40, 48] under restrictive settings, aspects such as
hyper-parameter tuning, model selection and performance
evaluation have not been addressed before. As such, the
Hamming loss [5, 7, 10, 11, 14, 19, 22, 40, 43, 48] continues
to be one of the most popular losses for extreme multi-label
learning along with precision [4, 6, 18, 21, 22, 34, 45, 46] and
the F-measure [5, 11, 15, 19, 20, 22, 40, 50]. On the other
hand, unbiased estimators for recall [38], average discounted
gain [26] and square loss [17] have been developed under the
restrictive assumption that labels go missing uniformly at
random from the ground truth. By contrast, this paper de-
velops propensity scored variants of precision, nDCG and
other loss functions and proves that they are unbiased even
under general probabilistic label noise models.

Propensity scoring has been used to develop unbiased es-
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Figure 1: Plot showing the number of times each label occurs
in a dataset: 246201 and 452262 labels occur less than 5
times each in Wikipedia and Amazon respectively. Such
labels are harder to predict than popular ones but might also
be more informative and rewarding in certain applications.

timators for observational data [37]. In machine learning,
propensities have been used for bias correction in situations
where the training and test data have been drawn from dif-
ferent distributions [3]. Propensities have also been used for
off policy evaluation, whereby feedback data from the inter-
action logs of an existing system is used to evaluate a new
system [8, 24, 25, 41, 42].

Label (item) weighting loss functions have been proposed
to promote the accurate prediction of infrequently occur-
ring labels (rare items) which might delight and surprise the
user. For instance, denoting a label’s normalized frequency
of occurrence by pl, [9, 44, 47, 49, 51] used the heuristic
of weighting each label by − log pl whereas [12, 35, 39] rec-

ommended a weight of p
−γ/(γ+1)
l where γ ≥ 0 was a user

tunable parameter. This paper provides theoretical justifi-
cation for such heuristics by showing how similar weights
can arise from the proposed propensity models.

3. A MOTIVATING EXAMPLE
Consider evaluating the performance of an extreme multi-

label algorithm for tagging Wikipedia articles by comput-
ing a chosen loss function on the ground truth labels pro-
vided by Wikipedia’s editors. To take a concrete exam-
ple, Wikipedia’s editors annotated the article for the Di-
vine Comedy with 15 labels such as “14th-century Chris-
tian texts”, “Epic poems in Italian”, “1300 in Italy”, etc.
Note that many relevant labels such as “Dante Alighieri”,
“Medieval philosophical literature” and “Allegory” are miss-
ing since it is impossible for any annotator or expert to go
through the entire list of Wikipedia labels and select all the
relevant ones. Evaluating performance using the Hamming
loss leads to the following issues which can be overcome by
the proposed propensity scored nDCG@k and precision@k.

Relevant labels: Table 2 shows that the number of la-
bels relevant to any given data point is far smaller than
the number of irrelevant ones. Accurately predicting a rel-
evant label is therefore more important than predicting an
irrelevant one. For instance, predicting that “Epic poems in
Italian” is relevant to the Divine Comedy is more difficult,
and informative, than predicting that “Baseball” is irrele-
vant. Similarly, it is more important to accurately predict
relevant labels to fill the few slots available in typical recom-
mendation applications than it is to predict irrelevant ones.
Unfortunately, the Hamming loss charges the same penalty
for misclassifying relevant and irrelevant labels. Precision@k
and nDCG@k avoid this by promoting the prediction of rel-
evant labels with high ranks.

https://en.wikipedia.org/wiki/Divine_Comedy


Missing labels: The Hamming loss would penalize an al-
gorithm for predicting that the label “Dante Alighieri” was
relevant to the article for the Divine Comedy since the la-
bel was missing from the ground truth. Section 4 addresses
this issue by developing propensity scored variants of preci-
sion@k and nDCG@k which provide unbiased estimates of
the true loss as if computed on the complete ground truth
without any missing labels.

Tail labels: Labels follow a power law distribution in
extreme multi-label learning applications (see Figure 1). In-
frequently occurring labels have little training data and are
harder to predict than frequently occurring ones but might
also be more informative and rewarding. This is particularly
important on a dataset such as Wikipedia where 246201 la-
bels occur in less than 5 articles each. For instance, little
information is gained by predicting popular generic labels
such as “Poems” for the Divine Comedy article as compared
to predicting relatively infrequent labels such as “Epic po-
ems in Italian” (which implies “Poems” and more) or “14th-
century Christian texts”. Similarly, in certain applications,
there is little to be gained by recommending popular items
since users might know about them already. Predicting rare
items might be more desirable in these cases. While existing
losses treat all labels as equal, Section 5 develops a propen-
sity model that naturally promotes the accurate prediction
of infrequent labels with high ranks.

4. PROPENSITY SCORED LOSSES
This Section develops propensity scored variants of preci-

sion@k, nDCG@k and other popular loss functions (see Ta-
ble 1 for examples). It is proved that the proposed propen-
sity scored losses computed on the observed labels provide
unbiased estimates of the true loss function computed on
the complete (but unobtainable) ground truth without any
missing labels.

Label representation: Extreme multi-label learning deals
with applications having an extremely large number of la-
bels L where it is not possible for any annotator to select
the exact relevant label subset for even a single data point.
Let y∗,y ∈ {0, 1}L denote the complete (but unobtainable)
and observed (but with missing labels) ground truth label
vectors for a given data point such that y∗

l = yl = 1 for
observed relevant labels, y∗

l = 1, yl = 0 for unobserved rele-

Table 1: (a) presents unbiased propensity scored loss func-
tions L(y, ŷ) corresponding to precision@k and nDCG@k for
an unrestricted probabilistic label noise model which is the
focus of this paper. The unbiased losses in (b), including the
Mean Reciprocal Rank (MRR) and the Average Discounted
Gain (ADG), require either knowledge of 1⊤y∗ or that la-
bels go missing with probability 1− gl/1

⊤y∗ with known gl
(except for the F-score). Note that ŷ has only k non-zero
entries for precision@k, nDCG@k and recall@k and that rl
represents the rank of label l in ŷ.

(a) (b)
Gain −L(y, ŷ) Gain −L(y, ŷ)

Precision@k 1
k

∑

l
1
pl
ylŷl Recall@k 1

1⊤y∗

∑

l
1
pl
ylŷl

nDCG@k
∑

l
ylŷl

pl log(rl+1)
(

∑

k
l=1

1
log(1+l)

)

MRR 1
1⊤y∗

∑

l
yl

plrl

ADG 1
1⊤y∗

∑

l
yl

pl log(rl+1)

-Hamming (

1
pl
(2ŷl − 1)

)

yl − ŷ2
l Fβ score (1+β2)

β2(1⊤y∗)+1⊤ŷ

∑

l
1
pl
ylŷlLoss

vant labels and y∗
l = yl = 0 for irrelevant labels. Continuing

with the example of the Divine Comedy from Section 3,
y∗
l = yl = 1 for the observed relevant label “Epic poems in

Italian”, while y∗
l = 1, yl = 0 for the relevant, but missing,

label “Dante Alighieri” and y∗
l = yl = 0 for the irrelevant

label “Baseball”. Furthermore, it is assumed that the noise
in the labelling process is one sided and that irrelevant la-
bels are never marked as relevant. For instance, Wikipedia’s
editors are not malicious and never allow an article to be
tagged with an irrelevant label. Note that, even if this mild
assumption was violated, it might be possible to hire anno-
tators to weed out the irrelevant tags. Also note that, since
y∗ is unavailable, this label representation does not assume
that the position of missing labels is known unlike previous
work [48]. Finally, let ŷ ∈ {0, 1}L denote an algorithm’s
predicted label vector for a given data point.

Propensities: The propensity pil ≡ P (yil = 1|y∗
il = 1)

denotes the marginal probability of a relevant label l being
observed for a data point i. No constraints have been placed
on the propensities apart from the fact that label noise is
one sided – i. e. P (yil = 1|y∗

il = 0) = 0. In particular,
it is not assumed that labels go missing independently or
uniformly at random. Note that, for notational convenience,
the subscript i will be dropped from pil even though the
propensity depends on both the label l and the data point
i.

Propensity scored loss functions: Let L∗(y∗, ŷ) =
∑L

l=1 L
∗
l (y

∗
l , ŷl) =

∑L
l:y∗

l
=1 L

∗
l (1, ŷl) denote the family of

loss functions which decompose over individual labels l and
are computed over the relevant labels alone ({l|y∗

l = 1}).
L∗ represents the true loss function measuring the loss in-
curred for predicting ŷ when the complete ground truth
vector was y∗. Training and performance evaluation us-
ing L∗ is desirable but infeasible as y∗ is unavailable. The
propensity scored variant of L∗ computed on the observed
ground truth y is defined to be L(y, ŷ) =

∑L
l:yl=1 Ll(1, ŷl) =

∑L
l:yl=1 L

∗
l (1, ŷl)/pl. Then the following theorem implies

that L can be a viable proxy for L∗ for training, model se-
lection, hyperparameter tuning and performance evaluation.

Theorem 4.1. The loss function L(y, ŷ) evaluated on the

observed ground truth y is an unbiased estimator of the true

loss function L∗(y∗, ŷ) evaluated on the complete ground

truth y∗. Thus, Ey[L(y, ŷ)] = Ey∗ [L∗(y∗, ŷ)], for any P (y∗)
and P (y) related through propensities pl and any fixed ŷ.

Proof. Please click here for the supplementary material
containing the proof.

Theorem 4.1 covers loss functions which decompose over
individual labels such as precision@k and nDCG@k which
are the primary focus of this paper. Unbiased estimators
of recall, average discounted gain, mean reciprocal rank and
other relevant non-decomposable loss functions can also be
derived if it is assumed that P (y∗) is a delta function imply-
ing that each ground truth label is either definitely relevant
or definitely irrelevant (with no uncertainty) to the data
point being annotated.

Theorem 4.2. If P (y∗) is a delta function then Ey[L(y, ŷ)]
= Ey∗ [L∗(y∗, ŷ)] for non-decomposable loss functions of the

form L∗(y∗, ŷ) =
∑L

l:y∗

l
=1

L∗

l (1,ŷl)

g∗(y∗,ŷ)
and L(y, ŷ) =

∑L
l:yl=1

L∗

l (1,ŷl)

g∗(y∗,ŷ)pl
with arbitrary propensities pl.

http://research.microsoft.com/~manik/pubs/Jain16-supp.pdf
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Figure 2: Propensities pl and their corresponding weights wl = 1/pl on Wikipedia and Amazon. The estimated propensities
follow a sigmoidal curve on the semi-log plot and provide a principled setting of the weights for recommending rare items as
compared to popular heuristics such as N−β

l and log(N/Nl).

Proof. Please click here for the supplementary material
containing the proof.

Note that Theorem 4.2 is useful only if g∗(y∗, ŷ) can be
evaluated even though y∗ is unknown. This is certainly
possible in some applications. For instance, in the case of
recall, g∗(y∗, ŷ) = 1⊤y∗ counts how many labels were rel-
evant in the complete ground truth. This can be readily
estimated by counting the number of face detections (1⊤y∗)
in a given image in name tagging applications on Face-
book even though the name of each individual might not
be known (y∗ is unknown). Alternatively, if g∗(y∗, ŷ) is un-
known, the following corollary derives unbiased estimators
when g∗(y∗, ŷ) = g∗(y∗) and labels go missing with proba-
bility 1−gl/g

∗(y∗) with known gl. Note that this generalizes
the results of [26, 38] which assume that labels go missing
uniformly at random with constant gl = 1⊤y.

Corollary 4.2.1. If P (y∗) is a delta function and labels

are retained with propensities pl = gl/g
∗(y∗), then Ey[L(y, ŷ)]

= Ey∗ [L∗(y∗, ŷ)] for non-decomposable loss functions of the

form L∗(y∗, ŷ) =
∑L

l:y∗

l
=1

L∗

l (1,ŷl)

g∗(y∗)
and L(y, ŷ) =

∑L
l:yl=1

L∗

l (1,ŷl)

gl
.

Proof. Please click here for the supplementary material
containing the proof.

The theorems so far prove that the propensity scored
losses are unbiased in expectation. In practice, one can only
compute the propensity scored loss on the observed labels
rather than in expectation over y. The following theorem
shows that the bias induced by this point estimate depends
on the average number of relevant labels rather than the to-
tal number of labels and that it reduces as the number of
points over which the loss is computed is increased.

Theorem 4.3. (Concentration bound) Let Y = {yi ∈
{0, 1}L}Ni=1 be a set of N independent observed ground truth

random variables. Then with probability at least 1− δ
∣

∣

∣
EY

[

1
N

∑N
i=1 L(yi, ŷi)

]

− 1
N

∑N
i=1 L(yi, ŷi)

∣

∣

∣
≤ ρL̄

√

1
2N

log
(

2
δ

)

where ρ = maxil

∣

∣

∣

1
pil

L∗

l (yil,ŷil)

g(y∗

i
,ŷi)

∣

∣

∣, L̄ =
√

1
N

∑N
i=1 L

∗
i
2 and L∗

i

is the maximum number of labels that can be relevant to a

data point i in the complete ground truth.

Proof. Please click here for the supplementary material
containing the proof.

Finally, an unbiased estimator can also be derived for the
Hamming loss even though other loss functions, such as pre-
cision@k and nDCG@k, might be preferable

Theorem 4.4. For any P (y∗) and P (y) related through

propensities pl and any fixed ŷ, Ey[L(y, ŷ)] = Ey∗ [L∗(y∗, ŷ)]

where L(y, ŷ) =
∑

l

(

1
pl
(1− 2ŷl)

)

yl + ŷ2
l is an unbiased es-

timator of the Hamming loss L∗(y∗, ŷ) =
∑

l ‖y
∗
l −yl‖

2 with

concentration bound ρL̄
√

1
2N

log (2/δ ) where ρ = maxil (1/pil ).

Proof. Please click here for the supplementary material
containing the proof.

5. PROPENSITY MODEL
The unbiased variants of precision@k, nDCG@k and other

loss functions developed in Section 4 require that the marginal
propensities of labels being retained is known. Unfortu-
nately, propensities are generally unknown as y∗ is unavail-
able due to the large label space. Based on empirical obser-
vation, this Section proposes that the propensities might be
modelled as a sigmoidal function of logNl

pl ≡ P (yl = 1|y∗
l = 1) =

1

1 + Ce−A log(Nl+B)
(1)

where Nl is the number of data points annotated with label l
in the observed ground truth dataset of size N and A,B are
application specific parameters and C = (logN−1)(B+1)A.
In particular, propensities are estimated on Wikipedia and
Amazon where meta-data is available for the task and shown
to give a close fit to (1) (see Figure 2).

Tagging on Wikipedia (A = 0.5, B = 0.4): The marginal
propensity of a label can be estimated as pl = Nl/N

∗
l where

Nl and N∗
l are the number of times the label occurred in

the observed and complete ground truth respectively. Es-
timates of N∗

l can be obtained for Wikipedia by leveraging
its hierarchy. It is assumed that if a label is relevant to a
Wikipedia article then so are all its ancestor labels. For in-
stance, the Divine Comedy article has been annotated with
“1300 in Italy” and should therefore have also been anno-
tated with its ancestor “14th century in Italy”. Examining
all Wikipedia articles revealed that 45 articles were anno-
tated with a descendant of the label “14th century in Italy”
but only 10 were annotated with the label itself resulting in
a propensity estimate of pl = 10/(10 + 45) = 0.182. This
procedure was carried out for all labels with more than 4
descendants for robust estimation. Labels with similar fre-
quencies were binned together in an equiheight histogram
with 20 labels per bin. Figure 2 plots the average propen-
sity per bin as a function of label frequency on a log scale.
As can be seen, the proposed sigmoid propensity model with
parameters A = 0.5 and B = 0.4 is a close fit to the esti-
mated propensities.

http://research.microsoft.com/~manik/pubs/Jain16-supp.pdf
http://research.microsoft.com/~manik/pubs/Jain16-supp.pdf
http://research.microsoft.com/~manik/pubs/Jain16-supp.pdf
http://research.microsoft.com/~manik/pubs/Jain16-supp.pdf


Product recommendation on Amazon (A = 0.6, B =
2.6): The item-to-item recommendation task on Amazon is
to predict the subset of items (labels) that a user might
buy along with a given item. In this case, Nl represents
the number of items that item l was bought along with in
the observed dataset (across all transactions) while N∗

l rep-
resents the total number of items that item l could have
been bought along with. While Nl is known, N∗

l can be
estimated by figuring out which items could have been sub-
stituted in place of the ones that item l was bought along
with. It has been argued that substitutable products can be
inferred from the “also viewed” items while complimentary
items can be inferred from the “also bought” items [28, 30].
Following this principle, N∗

l can be estimated as the total
number of unique items viewed along with items that item
l was “also bought” along with. For robustness, propensities
pl = Nl/N

∗
l were estimated only for those items for which

“also viewed” information was available for each of the items
that item l was “also bought” with . Items with similar Nl

were binned together in an equiheight histogram as in the
case of Wikipedia. Figure 2 plots the average propensity per
bin as a function of item frequency on a log scale. As can be
seen, the proposed sigmoid propensity model with param-
eters A = 0.6 and B = 2.6 is a close fit to the estimated
propensities.

Recommending rare items: It is important to remove
the popularity bias and recommend rare/novel items in many
applications [9, 12, 35, 39, 44, 47, 49, 51]. A common heuris-
tic is to weight each item inversely to its popularity and
to assign weighted rewards for accurate recommendations.
Weights have often been set in an ad hoc fashion as wl ∝
N−β

l [12, 35, 39] or wl ∝ log(N/Nl) [9, 44, 47, 49, 51].
Such weights arise naturally as inverse propensities in the

unbiased losses developed in this paper. As can be seen from
(1) and Table 1, each label in the proposed unbiased losses
has a weight given by

wl = 1/pl = 1 + C(Nl +B)−A (2)

which somewhat matches (Nl +B)−A and log(N/Nl) in dif-
ferent ranges of Nl (see Figure 2). This not only provides
a sound theoretical justification of label weighting heuris-
tics for recommending rare items but also leads to a more
principled setting of the weights.

Other datasets: Propensity estimation might not be
possible on datasets where meta information is not available.
In such cases, it is recommended that A = (0.5 + 0.6)/2 =
0.55 and B = (0.4 + 2.6)/2 = 1.5 are set to their values
averaged over Wikipedia and Amazon. This was verified to
be reasonably close to the parameter settings on the Wiki10
dataset (A = 0.55, B = 0.1).

6. ALGORITHMS
This Section develops the PfastreXML algorithm for ex-

treme multi-label learning. PfastreXML optimizes propen-
sity scored nDCG by leveraging FastXML [34] for nDCG
optimization. PfastreXML then further extends FastXML
to improve tail label prediction which is the most challeng-
ing aspect of extreme multi-label learning. PfastreXML
achieves this at scale by making key approximations which
increase FastXML’s training time by just seconds while re-
taining the prediction accuracy gains of the extension.

6.1 Propensity scored FastXML
Classifier architecture: Propensity scored FastXML

(PfastXML) shares the same architecture as FastXML [34]
which learns an ensemble of trees during training. Trees are
grown by recursively partitioning nodes starting at the root
until each tree is fully grown. Nodes are split by learning a
separating hyperplane which partitions training points be-
tween a left and a right child. The FastXML hyperplane is
learnt by optimizing nDCG such that each training point’s
relevant labels are ranked as highly as possible in its parti-
tion. Node partitioning terminates when a node contains
less than a user specified number of points. Leaf nodes
contain a probability distribution over labels generated by
normalizing the frequency counts of all the training labels
reaching the node.

Predictions are made in logarithmic time by passing a
test point down each of the balanced trees in the ensemble.
The test point is sent to an internal node’s left (right) child
if it lies on the negative (positive) side of the separating
hyperplane at that node. The label distributions of all the
leaves containing the test point are aggregated in order to
make a prediction as follows:

Ppf(y
∗|x) =

∑T
t=1 P

leaf
t (x)

T
(3)

Propensity scored objective function: PfastXML im-
proves upon FastXML by replacing the nDCG loss with
its propensity scored variant which is unbiased and assigns
higher rewards for accurate tail label predictions. Given a
set of N training points at a node {(xi,yi)

N
i=1} with fea-

tures xi ∈ RD and observed ground truth label vectors
yi ∈ {0, 1}L, PfastXML’s separating hyperplane w∗ at the
node is given by the optimal solution of
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where LPSnDCG@L
(r,y) = −
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l
yl
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, i indexes all

the training points present at the node being partitioned,
δi ∈ {−1,+1} indicates whether point i was assigned to
the negative or positive partition and r+ and r− represent
the predicted label rankings for the positive and negative
partition respectively.

Optimization: Note that FastXML’s objective function
can be recovered from PfastXML’s by substituting yp

il =
yil/pil – i. e. by replacing each label yil with label yp

il. PfastXML’s
objective function can therefore be optimized by FastXML’s
iterative alternating optimization applied to yp

il. In each it-
eration, the algorithm fixes w and alternates between opti-
mizing δ and r± using efficient closed form solutions until a
stationary point is reached according to Theorem 1 of [34].
Then δ and r± are fixed and w is optimized by solving a
standard l1 regularized logistic regression binary classifica-
tion problem using Liblinear [13].

Scale: PfastXML enjoys all the scaling properties of FastXML
and is therefore one of the most efficient extreme multi-label



Table 2: Dataset statistics

Dataset
Train Features Labels Test Avg. labels Avg. points
N D L M per point per label

EUR-Lex 15,539 5,000 3,993 3,809 5.31 25.73
AmazonCat-13K 1,186,239 203,882 13,330 306,782 5.05 566.01
Wiki10-31K 14,149 101,938 30,935 6,613 17.25 11.58
WikiLSHTC-325K 1,778,351 1,617,899 325,056 587,084 3.26 23.74
Amazon-670K 490,449 135,909 670,091 153,025 5.38 5.17
Ads-9M 70,455,530 2,082,698 8,838,461 22,629,136 1.79 14.32

learning algorithm for large scale problems. It could train
on WikiLSHTC-325K (325 K labels, 1.7 M training points
and 1.6 M dimensions) and Ads-9M (9 M labels, 70 M train-
ing points and 2 M dimensions) in less than 30 minutes and
17 hours respectively using a 16 core Intel Xeon 2.6 GHz
server. In contrast, MLRF [4] required 4 and 42 hours on
a thousand core cluster for training on these datasets and
resulted in significantly lower prediction accuracies [34]. No
other algorithm has been shown to scale to datasets of the
size of Ads-9M to the best of our knowledge. Equally impor-
tantly in terms of scaling, PfastXML’s predictions required
less than 1.5 milliseconds per test point even at the largest
scale which is critical for deployment in real world applica-
tions.

6.2 PfastreXML
Propensity scoring improves FastXML but tree classifiers

are still prone to predicting tail labels with low probabili-
ties as partitioning errors in the internal nodes dispropor-
tionately reduce the support of tail labels in the leaf node
distributions. PfastreXML addresses this limitation by re-
ranking PfastXML’s predictions using classifiers designed
specifically for tail labels. PfastreXML’s training and pre-
diction routines are shown in Algorithms 2 and 3 of the
supplementary material while code is available from [1].

Tail label classifiers: It is assumed that each label can
be predicted independently based on a hyperspherical deci-
sion boundary generated by

P (y∗
il|xi) = 1/(1 + v

2y∗

il−1

il ) where vil = e
γ
2
‖xi−µl‖

2
2 (5)

Discriminative MLE estimation of the parameters {µl} on
the observed training data {(xi,yi)

N
i=1} with features

xi ∈ RD and observed ground truth label vectors yi ∈
{0, 1}L can be carried out as argmax{µl}

∏N
i=1

∏L
l=1

∑1
y∗

il
=0

P (yil|y
∗
il)P (y∗

il|xi) where it has been reasonably assumed
that P (yil|y

∗
il,xi) = P (yil|y

∗
il).

Optimization: Taking the log leads to L independent
optimization problems

µ
∗
l = argmax

µl

N
∑

i=1

log

(

(1− yil) +
pil(2yil − 1)

1 + vil

)

(6)

Taking the gradient and equating it to zero yields µ∗
l =

∑N
i=1 uilxi

∑

N
i=1 uil

where uil =
vil

1+vil
− (1−yil)vil

1+vil−pil
. Note that this is

not a closed form solution since vil is a function of µ∗
l and

hence one needs to apply an optimization technique, such as
stochastic gradient descent, to obtain µ∗

l .
Approximation: Unfortunately, stochastic gradient de-

scent is too expensive at the scale of Ads-9M. A simple, yet
effective, approximation is therefore proposed which allowed
training on Ads-9M in 18 minutes on a single core (all other

datasets were trained in less than 20 seconds), led to sparse
solutions taking up only 2.64 Gigabytes of RAM for Ads-9M
and reduced prediction accuracy over the stochastic gradi-
ent descent solution by 0.2% as measured on the smaller
datasets. In particular, assuming that γ

2
‖xi−µl‖

2 ≫ 0∀ i ∈
{1, .., N}, led to the simplification uil ≈ yil yielding

µ
∗
l =

∑N
i=1 yilxi

∑N
i=1 yil

(7)

Thus, each µ∗
l turns out to be the mean of the training

points for which the label was observed to be relevant. This
implies that solutions preserving data sparsity can be effi-
ciently computed for millions of tail labels as each of them
has only a handful of training points.

Re-ranking: The final ranked list of labels is predicted
by sorting a linear combination of (3) and (5)

sl = α logPpf(y
∗
l = 1|x) + (1− α) logP (y∗

l = 1|x) (8)

restricted to those l for which Ppf(y
∗
l = 1|x) 6= 0. Note that

the re-ranking takes place in 0.13 milliseconds per point on
Ads-9M so that the overall prediction time continues to be
less than 1.5 milliseconds per test point.

7. EXPERIMENTS
Experiments were carried out on a synthetic dataset to

show that the proposed propensity scored loss functions are
unbiased and preferable for both training and performance
evaluation. Experiments were also carried out on the largest
benchmark datasets demonstrating that PfastreXML could
achieve significantly higher prediction accuracies as com-
pared to the state-of-the-art. Improvements in the click-
through rates on Bing Ads indicated that the proposed loss
functions and algorithms were better suited for real world
applications.

Datasets: Experiments were carried out on extreme multi-
label datasets including Ads-9M, Amazon-670K [6, 29], Wiki10-
31K [6, 52],WikiLSHTC-325K [33, 34], AmazonCat-13K [29]
and EUR-Lex [31]. The Ads-9M dataset is proprietary. All
the other datasets are publically available and can be down-
loaded from The Extreme Classification Repository [2]. The
tasks include annotating Wikipedia articles with the subset
of relevant 325 K Wikipedia tags, item-to-item recommen-
dation on Amazon with 670 K items and ranking 9 M queries
for sponsored search advertising on Bing. Table 2 lists the
statistics of these datasets.

Baseline algorithms: PfastreXML was compared to a
number of baseline extreme multi-label algorithms includ-
ing FastXML [34] and SLEEC [6] which are the leading
tree and embedding based approaches respectively. Other

http://research.microsoft.com/~manik/pubs/Jain16-supp.pdf
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Figure 3: (a) propensity curves used for simulating missing labels on the EUR-Lex dataset with each curve labelled with
the corresponding percentage of missing labels; (b) propensity scored nDCG@k is unbiased; (c) propensity scoring improves
training; and (d) training using incorrect propensities (A 6= 0.55) might be better than training without propensities. See
text for details. Figure best viewed under magnification.

baseline algorithms include 1-vs-All [16], LEML [48], WSA-
BIE [45], CPLST [10], CS [18], ML-CSSP [7] and LPSR [46].
A Popularity baseline was also included which predicted a
constant ranking of the most frequently occurring labels in
each dataset. Unfortunately, some of the algorithms did not
scale beyond the EUR-Lex dataset and results are presented
in Table 3.

Implementations of SLEEC, FastXML, LEML and 1-vs-
All were provided by the authors. The remaining algorithms
were implemented by us taking care to ensure that the pub-
lished results could be reproduced and were verified by the
authors wherever possible.

Hyper-parameters: PfastreXML has 2 hyper-parameters
α, γ in addition to FastXML’s hyper-parameters. These
were set to constants α = 0.8, γ = 30 across all datasets.
All of FastXML’s hyper-parameters were also set to con-
stant default values across all datasets as was done in [34].
This helps significantly reduce training time by eliminating
hyper-parameter tuning. The hyper-parameters for all the
other algorithms were set using fine grained validation on
each data set so as to achieve the highest possible predic-
tion accuracy.

Evaluation metrics: Given a set of M test points, per-
formance was evaluated using the unbiased propensity scored
loss functions of Table 1 as G({ŷi}) = −1

M

∑M
i=1 L(yi, ŷi).

Note that the gain G could be greater than 1 due to the
propensities. Therefore, for greater interpretability, Table 3
reports 100∗G({ŷi})/G({yi}) for Precision@k and nDCG@k,
referred to as Pk and Nk respectively, for k = 1, 3 and 5.
Coverage@k measuring the percentage of normalized unique
labels present in the top k = 1, 3 and 5 predictions made by
an algorithm across all test points is also reported as Ck.

Simulations: It was assumed that the complete ground
truth was available for the EUR-Lex dataset and missing
labels were simulated according to the propensity curves
shown in Figure 3a.

In the second experiment, FastXML was trained on miss-
ing labels by optimizing nDCG while PfastXML was trained
on the same set by optimizing propensity scored nDCG.
Both methods were evaluated using nDCG@3 computed on
the complete ground truth with no missing labels. As Fig-
ure 3c shows, PfastXML consistently outperformed FastXML
thereby indicating that propensity scoring could improve
training. A related concern might be that PfastXML (or
PfastreXML) might outperform FastXML just because it

optimizes the loss function being used for evaluation while
FastXML does not. This experiment demonstrates other-
wise as PfastXML was trained using propensity scored nDCG
but evaluated using standard nDCG. Results of similar ex-
periments on the benchmark datasets are provided in the
supplementary material.

Finally, Figure 3d demonstrates that training with in-
correct propensities might be better than training with no
propensities. In this experiment, labels were removed from
the training set using a reference propensity curve depicted
in bold in Figure 3a. FastXML and PfastXML were trained
on this set and their performance evaluated using nDCG@3
computed on the complete test set without any missing la-
bels. PfastXML was then trained on the very same training
set but using incorrect propensities (also shown in Figure 3a
with A 6= 0.55). As can be seen, PfastXML trained on incor-
rect propensities could outperform FastXML trained with-
out propensities. This indicates that using even incorrect
propensity estimates might be beneficial in certain situa-
tions as compared to using no propensities.

Benchmark Results: Table 3 compares PfastreXML’s
performance to that of state-of-the-art SLEEC, FastXML
and other baseline algorithms using unbiased precision and
nDCG. As can be seen, the proposed PfastXML and Pfas-
treXML lead to significantly better prediction accuracies as
compared to the state-of-the-art. PfastreXML’s improve-
ments ranged from 3% on Ads-9M to more than 20% on
AmazonCat-13K. Figure 4 shows that most of these im-
provements were made for infrequently occurring tail labels.
In addition, Table 4 shows that PfastreXML predicted a
larger number of unique labels than SLEEC or FastXML
further indicating that PfastreXML had better coverage in
the tail.

PfastreXML also improves upon PfastXML’s prediction
accuracy with negligible training and prediction overheads.
For instance, PfastXML could train on WikiLSHTC-325K
and Ads-9M in less than 30 minutes and 17 hours respec-
tively using a 16 core Intel Xeon 2.6 GHz server. Pfas-
treXML took an extra 12 seconds and 18 minutes for train-
ing on these datasets using a single core. PfastreXML’s pre-
dictions took an extra 0.13 milliseconds per test point over
PfastXML’s and continued to be under 1.5 milliseconds.

Sponsored search on Bing: PfastreXML’s query rank-
ings were also used to serve ads on the Bing search engine.
PfastreXML was observed to give an improvement of sig-

http://research.microsoft.com/~manik/pubs/Jain16-supp.pdf


Table 3: The proposed PfastreXML and PfastXML algo-
rithms make significantly more accurate predictions as com-
pared to state-of-the-art SLEEC, FastXML and other base-
line algorithms. PfastreXML’s predictions are more accu-
rate than PfastXML’s with negligible training and predic-
tion overheads. Performance is evaluated according to the
unbiased propensity scored Precision@k (Pk) and nDCG@k
(Nk) for k = 1, 3 and 5.

(a) EUR-Lex N = 15K,D = 5K,L = 4K

Algorithm N1(%) N3(%) N5(%) P1(%) P3(%) P5(%)
Popularity 1.80 2.10 2.36 1.80 2.20 2.62
1-vs-All 37.97 42.44 43.97 37.97 44.01 46.17
SLEEC 35.45 39.79 41.97 35.45 41.35 44.62
LEML 24.33 26.45 27.70 24.33 27.22 29.13
WSABIE 31.65 34.12 35.43 31.65 35.04 36.99
CPLST 28.93 31.60 32.92 28.93 32.57 34.55
CS 25.31 26.98 25.71 25.31 27.57 25.13
ML-CSSP 25.25 26.70 27.79 25.25 27.27 28.97
FastXML 27.61 33.22 36.28 27.61 35.35 39.95
LPSR 33.65 38.20 39.82 33.65 39.88 42.17
PfastXML 41.31 44.01 45.13 41.31 45.02 46.67
PfastreXML 45.38 46.42 47.25 45.38 46.79 48.08

(b) AmazonCat-13K N = 1.18M,D = 203K,L = 13K

Algorithm N1(%) N3(%) N5(%) P1(%) P3(%) P5(%)
Popularity 14.41 13.08 13.22 14.41 12.59 12.95
SLEEC 46.75 55.19 60.08 46.75 58.46 65.96
FastXML 46.58 55.48 61.59 46.58 59.00 68.50
PfastXML 67.44 70.70 72.27 67.44 71.94 74.32
PfastreXML 69.05 71.79 73.33 69.05 72.83 75.21

(c) Wiki10-31K N = 14K,D = 101K,L = 31K

Algorithm N1(%) N3(%) N5(%) P1(%) P3(%) P5(%)
Popularity 2.30 2.26 2.28 2.30 2.25 2.29
SLEEC 13.43 13.66 13.81 13.43 13.75 13.96
FastXML 10.31 10.18 10.35 10.31 10.14 10.42
PfastXML 15.62 16.05 16.42 15.62 16.20 16.71
PfastreXML 21.32 19.97 19.48 21.32 19.53 18.93

(d) WikiLSHTC-325K N = 1.78M,D = 1.62M,L = 325K

Algorithm N1(%) N3(%) N5(%) P1(%) P3(%) P5(%)
Popularity 2.56 1.91 1.83 2.56 1.65 1.53
SLEEC 20.51 22.45 23.52 20.51 23.32 25.23
FastXML 16.52 19.70 21.17 16.52 21.12 23.69
PfastXML 25.58 26.55 27.42 25.58 27.01 28.59
PfastreXML 31.16 31.56 32.40 31.16 31.80 33.35

(e) Amazon-670K N = 490K,D = 136K,L = 670K

Algorithm N1(%) N3(%) N5(%) P1(%) P3(%) P5(%)
Popularity 0.03 0.04 0.04 0.03 0.04 0.04
SLEEC 20.62 22.63 24.43 20.62 23.32 25.98
FastXML 20.20 22.94 25.26 20.20 23.88 27.28
PfastXML 25.61 26.95 28.09 25.61 27.42 29.09
PfastreXML 29.93 30.91 31.94 29.93 31.26 32.80

(f) Ads-9M N = 70.45M,D = 2.08M,L = 8.84M

Algorithm N1(%) N3(%) N5(%) P1(%) P3(%) P5(%)
Popularity 0.05 0.08 0.09 0.05 0.09 0.12
FastXML 12.89 14.86 15.61 12.89 15.88 17.26
PfastXML 13.27 15.39 16.32 13.27 16.49 18.22
PfastreXML 13.52 16.43 17.79 13.52 17.95 20.50

nificantly more than 5% in the clickthrough rate over both
FastXML and the highly specialized system in production

Table 4: PfastreXML has more unique labels Ck in the top
k = 1, 3 and 5 predictions across all test points in a dataset
as compared to SLEEC or FastXML indicating that it has
better coverage of tail labels.

(a) EUR-Lex N = 15K,D = 5K,L = 4K

Algorithm C1 (%) C3 (%) C5 (%)
1-vs-All 33.50 44.29 53.82
SLEEC 27.21 38.10 49.26
FastXML 16.39 28.39 40.49
PfastreXML 48.81 56.29 62.31

(b) AmazonCat-13K N = 1.18M,D = 203K, L = 13K

Algorithm C1 (%) C3 (%) C5 (%)
SLEEC 8.62 23.50 49.16
FastXML 2.13 15.76 53.69
PfastreXML 83.03 85.12 86.49

(c) Wiki10-31K N = 14K,D = 101K, L = 31K

Algorithm C1 (%) C3 (%) C5 (%)
SLEEC 5.94 5.73 6.59
FastXML 1.57 2.12 2.88
PfastreXML 25.67 18.48 17.67

(d) WikiLSHTC-325K N = 1.78M,D = 1.62M,L = 325K

Algorithm C1 (%) C3 (%) C5 (%)
SLEEC 14.06 24.53 30.11
FastXML 9.52 18.43 23.29
PfastreXML 29.63 36.45 40.67

(e) Amazon-670K N = 490K,D = 136K,L = 670K

Algorithm C1 (%) C3 (%) C5 (%)
SLEEC 24.19 26.18 30.97
FastXML 22.06 25.25 30.94
PfastreXML 34.58 36.41 40.13

(f) Ads-9M N = 70.45M,D = 2.08M,L = 8.84M

Algorithm C1 (%) C3 (%) C5 (%)
FastXML 3.26 3.94 4.33
PfastreXML 6.04 7.45 8.09

(which was a large ensemble of many different ranking tech-
niques). Note that the production system was very good
at predicting head queries with high ranks and that Pfas-
treXML was rewarded for making only those predictions
which could not be made by the production system. Ac-
curately ranking tail queries highly was therefore critical in
this case and PfastreXML was able to successfully serve ads
which had never received clicks before. This helps verify that
the propensity scored loss functions and proposed algorithm
align with the requirements of real world applications.
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Figure 4: Plot showing the contribution of each label to the overall propensity scored Precision@1 and Precision@5. Pfas-
treXML is significantly more accurate at predicting infrequently occurring (small Nl) tail labels. Figure best viewed under
magnification

8. CONCLUSIONS
This paper developed loss functions suitable for extreme

multi-label learning and long tail, missing label applications
such as ranking, recommendation and tagging. Propensity
scored variants of precision and nDCG were developed and
proved to give unbiased estimates of the true loss function
evaluated on the complete ground truth. No restrictions
were placed on the propensities apart from the mild assump-
tion that irrelevant labels were never marked as relevant.
Furthermore, propensity models were developed based on
real world applications and were shown to naturally pro-
mote the accurate prediction of infrequently occurring tail
labels. This provides a sound theoretical justification of pop-
ular label weighting heuristics used to remove the popularity
bias and recommend rare/novel items. The results also pro-
vide a more principled setting of the weights as compared
to previous heuristics.

This paper also developed the PfastreXML algorithm for
optimizing propensity scored nDCG. PfastreXML was shown
to make significantly more accurate predictions on all datasets
as compared to the state-of-the-art. PfastreXML was demon-
strated to be specially well suited to predicting tail labels
which is the most challenging aspect of extreme multi-label
learning. This helped PfastreXML achieve significantly higher
clickthrough rates for sponsored search advertising on Bing
as compared to the large ensemble of highly specialized rankers
currently in production. In terms of scaling, PfastreXML
could train on WikiLSHTC-325K and Ads-9M in less than
30 minutes and 17 hours respectively using a 16 core In-
tel Xeon 2.6 GHz server. Finally, PfastreXML’s predictions
were made in under 1.5 milliseconds per test point which is
critical for deployment in real world applications. The code
for PfastreXML is available from [1].
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