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ABSTRACT
Clustering technology has found numerous applications in min-
ing textual data. It was shown to enhance the performance of re-
trieval systems in various different ways, such as identifying differ-
ent query aspects in search result diversification, improving smooth-
ing in the context of language modeling, matching queries with
documents in a latent topic space in ad-hoc retrieval, summariz-
ing documents etc. The vast majority of clustering methods have
been developed under the assumption of a static corpus of long (and
hence textually rich) documents. Little attention has been given to
streaming corpora of short text, which is the predominant type of
data in Web 2.0 applications, such as social media, forums, and
blogs. In this paper, we consider the problem of dynamically clus-
tering a streaming corpus of short documents. The short length
of documents makes the inference of the latent topic distribution
challenging, while the temporal dynamics of streams allow topic
distributions to change over time. To tackle these two challenges
we propose a new dynamic clustering topic model - DCT - that
enables tracking the time-varying distributions of topics over doc-
uments and words over topics. DCT models temporal dynamics by
a short-term or long-term dependency model over sequential data,
and overcomes the difficulty of handling short text by assigning a
single topic to each short document and using the distributions in-
ferred at a certain point in time as priors for the next inference,
allowing the aggregation of information. At the same time, taking
a Bayesian approach allows evidence obtained from new stream-
ing documents to change the topic distribution. Our experimental
results demonstrate that the proposed clustering algorithm outper-
forms state-of-the-art dynamic and non-dynamic clustering topic
models in terms of perplexity and when integrated in a cluster-
based query likelihood model it also outperforms state-of-the-art
models in terms of retrieval quality.
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1. INTRODUCTION
New media applications and the increasing prevalence of mo-

bile devices have facilitated the collection and rapid dissemina-
tion of news and information by anyone connected to the Internet.
Massive amounts of user generated content, often in the form of
short text (e.g. microblog posts), typically clustered around real-
life events [6, 20], are streaming in, and being consumed by inter-
connected users. Organizing large text collections around concise
topics (or clusters) allows effective summarization and retrieval of
information [5, 7, 13]. In the case of a rapidly streaming short
text, however, traditional clustering algorithms are either not ap-
plicable, or do not tackle the temporal and sparse nature of the
text corpus [7, 25]. In this paper we propose a dynamic cluster-
ing topic model method – DCT – for short-length streaming text
and we demonstrate that it can effectively model both the temporal
nature of topics in streaming text and the sparsity problem of short
text, improving the performance of clustering and ad-hoc search.

One of the key challenges in clustering streaming data is the dy-
namic nature of topics (or clusters): topic distributions change with
time, with previously salient topics “fading-off” and vice versa [1,
6, 7, 10, 22]. Therefore, techniques developed ought to allow for
changes in the topic distribution along time. For example, Twitter
posts about Apple Inc. on September 9, 2015, when Apple in-
troduced iPhone 6s plus, are expected to be clustered around Ap-
ple iPhone 6s plus, while this may not be the case on December
3, 2015, when Apple swift was announced. The problem of clus-
tering documents in streams has been widely investigated in the
past [1, 6, 10, 22]. However, most of the previous work makes the
assumption that the content of documents is rich enough to infer a
per-document multinomial distribution of topics. The second key
challenge in clustering streaming data is that this assumption does
not hold for short text, as the number of words in each document is
limited, which prohibits the accurate inference of a topic distribu-
tion over the document. Our method tackles the two challenges by
introducing a collapsed Gibbs sampling algorithm that (a) assigns
a single topic to all the words of a short document, and (b) uses
the inferred topic distribution of past documents as a prior of the
topic distribution of the current documents, while at the same time
allowing new evidence (newly streamed documents) to change the
posterior distribution of topics. Based on the exact definition of the
prior the proposed model enables both short-term and long-term
dependencies between the previously and currently inferred distri-
butions.

In this paper, we take a special interest in the application of topic
models in the area of information retrieval. Our goal is to infer the
relevance of each cluster to a user query by calculating the dynamic
topic distribution over short documents and incorporating that in a
query likelihood model for ad-hoc retrieval. We evaluate our pro-
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posed clustering model on a publicly available Twitter dataset by
comparing the retrieval performance achieved with state-of-the-art
methods and demonstrate the superiority of our algorithm.

The contribution of this work is threefold:

(1) We propose a Dynamic Dirichlet Multinomial Mixture Model
that captures short and long term temporal dependencies, track-
ing dynamic topic distributions over short document streams.

(2) We propose a collapsed Gibbs sampling algorithm for our
Dynamic Dirichlet Multinomial Mixture Model to infer the
changes in topic and document probability distributions.

(3) We analyze the effectiveness of the proposed clustering mod-
els by using the produced clusters to improve the perfor-
mance of short text ad-hoc retrieval against a Twitter dataset,
and demonstrate that our method significantly outperforms
state-of-the-art methods.

The remainder of the paper is organized as follows: §2 discusses
related work; §3 details the problem; §4 describes the proposed
clustering model; §5 describes our experimental setup; §6 is de-
voted to our experimental results and we conclude the paper in §7.

2. RELATED WORK
There are two lines of work related to our work, topic modeling

and clustering, with a rich literature available on both topics. In
the following sections we only discuss the most related models and
algorithms.

2.1 Topic Modeling
Topic modeling provides a suite of algorithms to discover hid-

den thematic structure in a collection of documents. A topic model
takes a collection of documents as input, and discovers a set of “la-
tent topics”—recurring themes that are discussed in the collection—
and the degree to which each document exhibits those topics [3].
Latent Dirichlet Allocation (LDA) [3] is one of the simplest topic
models, and it decomposes a collection of documents into topics—
biased probability distributions over terms—and represents each
document with a subset of these topics.

Many models that extend LDA have been proposed, such as topic
over time model [20], dynamic mixture model [22], topic track-
ing model [10], online multi-scale dynamic topic model [11] and
more recently, (static) Dirichlet multinomial mixture model [25],
Dirichlet-hawkes topic model [6] and user-aware sentiment topic
model [24]. These models can either infer topics in static collec-
tions of short text, e.g. the (static) Dirichlet multinomial mixture
model [25], or infer dynamic topics in long documents, e.g. the dy-
namic mixture model [22], the topic tracking model [10], and the
online multi-scale dynamic topic model [11]. Instead, we propose
two dynamic Dirichlet multinomial mixture topic models for short
text streams: one for short term dependency of the current infer-
ence of the topics and another for long term dependency. Based on
these topic models we can infer the dynamic changes of the multi-
nomial distribution of the documents in a stream, and the document
probabilities to the topics, and we use the inferred topics to cluster
the documents. Hence, our model can both infer topics in short text
streams and track the dynamic changes in clusters.

2.2 Clustering
Clustering is one of the main technologies that has been applied

to tackle many challenges in data mining, text mining, and infor-
mation retrieval [5]. For instance, [21] proposed a cluster-based
document retrieval model where the clusters are generated by LDA.

Table 1: Main notation used in dynamic clustering topic model.
Notation Gloss
d document
z topic
t time
v word
V total number of words
Z total number of latent topics
d′t set of documents arriving at time t
dt document stream up to time t, shorten for d≤t
αt parameter of topic Dirichlet prior at time t
βt parameter of word Dirichlet prior at time t
Θt dynamic topic distribution at time t
Φt dynamic word distribution at time t

[13] presented a burst-aware approach to fusing document lists re-
trieved in response to a query via integrating information used by
fusion methods with that induced from time-sensitive clusters of
documents. Efron et al [7] found that relevant documents tend to
cluster together in time and utilizing some existing clustering algo-
rithms can boost the performance of tweet search. In terms of data
mining, Botezatu et al. [4] proposed a multi-view incident ticket
clustering algorithm for optimal ticket dispatching.

To this date, a large number of clustering algorithms have been
proposed with KNN (K-Nearest Neighbours) and K-Means as some
of the most famous ones. Among those, given that we want to
tackle the problem of clustering short documents in streams, we
focus on Dirichlet multinomial mixture clustering model [25], that
performs well on short text, and which is based on topic modeling.
This model acknowledges that as the number of words in short doc-
uments is limited, and thus each word in the same document can be
assigned to one topic. Then documents assigned to the same topic
are in the same cluster. Their experimental results validated the ef-
fectiveness of this assumption. However, this model and more re-
cent short document clustering model based on convolutional neu-
ral networks [23] can only cluster a static collection of short docu-
ments. Other clustering technologies based on topic modeling in-
clude dynamic mixture model [22], topic over time model [20] and
topic tracking model [10]. However, until now all of the dynamic
topic models make a strong assumption that documents arriving in
a data stream are long and provide rich context for the inference.
To the best of our knowledge, our proposed clustering algorithm is
the first attempt to cluster streams of short text documents.

3. TASK DESCRIPTION
The task we address in this work is the clustering of short text

streaming documents, with clusters changing dynamically, as new
documents stream in. The dynamic clustering algorithm is essen-
tially a function f that satisfies:

d≤t = {. . . ,d′t−2,d
′
t−1,d

′
t}

f−→ c≤t = {c′1, c′2, . . . , c′Z},

where d≤t represents the stream of documents with d′t being the
most recent set of short documents, arrived at time t, and c≤t is the
resulting set of clusters of documents up to time t, with c′z being
the z-th cluster in ct and Z the total number of clusters. d′t com-
prises a set of short text documents, with each document d being
represented by a sequence of words appearing in d, coming from
a vocabulary V = {v1, v2, . . . , vV }. We assume that the length
of d is no more than a predefined small length (for instance, 140
characters in the case of Twitter). For brievity, in the remainder of
the paper, we denote d≤t and c≤t with dt and ct, respectively.

Table 1 summarizes the main notation used in our dynamic clus-
tering topic model.



4. DYNAMIC CLUSTERING MODEL
In this section, we describe our proposed dynamic clustering

topic model, DCT, aiming at the effective clustering of short doc-
ument streams.

4.1 Preliminaries
The goal of the dynamic clustering topic model is to infer the

dynamically changing topic distribution and document distribution
over topics at any given time t. That is, we want to infer the tempo-
ral word probability for a topic, P (v|t, z), and the temporal topic
probability over a document, P (z|t, d). Previous work [25] has
demonstrated that algorithms that assign a single topic to all the
words in a short document outperform those that assign different
topics to different words in terms of clustering quality. The intu-
ition behind this observation is that the number of words in short
documents is limited and a short document is likely to be associ-
ated with one topic. Following [25], our proposed Gibbs sampling
– as it will be described in the following sections – assigns a single
topic to all the words in each short document.

Following the notation of past topic modeling work [2, 3, 10, 20],
we let Θt = {θt,z}Zz=1be the topic distribution at time t with
θt,z = P (z|t) > 0, and

∑Z
z=1 θt,z = 1. We also let Φt =

{φt,z}Zz=1be the word distribution over topics at time t. φt,z =
{φt,z,v}Vv=1 is the (multinomial) distribution of words for topic z
at time t, while the probability of a word v belonging to z at t,
φt,z,v = P (v|t, z) > 0, and

∑V
v=1 φt,z,v = 1; V is the size

of the vocabulary V. In fully bayesian non-dynamic topic mod-
els (such as LDA [3]), there is an underlying assumption that the
per-document topic distribution is independent of the past distri-
butions, and have a Dirichlet prior with a static set of parameters
κ = {κz}Zz=1, with κz > 0,

P (Θt|κ) ∝
Z∏
z=1

θκz−1
t,z , (1)

Similarly, the per-topic word distribution φt,z also has a Dirich-
let prior with a static set of parameters γ = {γv}Vv=1, with γv > 0,

P (φt,z|γ) ∝
V∏
v=1

φγv−1
t,z,v , (2)

The assumptions made in (1) and (2) are not realistic when it
comes to a data stream setting, where the distributions at time t are
dependent on past distributions. In the following subsections, we
infer Θt and Φt by modeling short-term dependency (Section 4.2)
and long-term dependency (Section 4.3).

4.2 Short-term Dependency DCT
Modeling short-term dependency. To model the temporal de-
pendencies of the topics in a document stream, and by following
the work of past dynamic topic models [10, 11, 22], we propose a
short-term-dependency DCT model. According to this model, the
topic distribution at time t remains the same as the one at time t−1
if no new documents are observed, while it is updated on the basis
of new evidence when a new set of documents is observed at time t.
To achieve that we factorize the parameter κ in (1) into the mean of
the distribution at the previous time-step, θt−1,z , and a set of preci-
sion values αt = {αt,z}Zz=1. Hence, κ = αtΘt−1, which allows
the mean of the current distribution Θt to depend on the mean of
the previous distribution Θt−1,

P (Θt|Θt−1, αt) ∝
Z∏
z=1

θ
(αt,zθt−1,z)−1
t,z , (3)

where the precision value αt,z represents the topic persistency, that
is how salience is topic z at time t compared to that at time t − 1.
The distribution is a conjugate prior of the Multinomial distribu-
tion, hence the inference can be performed by Gibbs sampling [17].

In a similar way, to model the dynamic changes of the multino-
mial distribution of words specific to topic z, we assume a Dirichlet
prior, in which the mean of the current distribution Φt evolves from
the mean of the previous distribution Φt−1 with the precision being
βt,

P (φt,z|φt−1,z, βt,z) ∝
V∏
v=1

φ
(βt,z,vφt−1,z,v)−1
t,z,v , (4)

where as before, the Dirichlet prior parameter γ in (2) is factorized
into the mean and precision, γ = βt,zφt−1,z , with βt = {βt,z}Zz=1

being the set of precision values at time t for the topics. Here
βt,z = {βt,z,v}Vv=1, with βt,z,v representing the persistency of
word v in topic z at time t, a measure of how consistently word v
belongs to topic z at time t compared to that at the previous time
t− 1. We describe the inference for Θt, Φt, αt and βt in later part
of this section.

Assuming that we know the topic distribution at time t − 1,
Θt−1, and the word distribution over topics at time t − 1, Φt−1,
the proposed Dynamic Dirichlet Multinomial Mixture Model is a
generative topic model that depends on Θt−1 and Φt−1. We can
initialize (at time t = 0) the means of the two distributions to
θ0,z = 1/Z and φ0,z,v = 1/V . The generative process (used
by the Gibbs sampler for parameter estimation) of our model for
documents in stream dt at time t, is as follows,

i. Draw a multinomial distribution Θt from a Dirichlet prior
distribution αtΘt−1;

ii. Draw Z, one for each topic z, multinomial distributions φt,z
from a Dirichlet prior distribution βt,zφt−1,z;

iii. For each document d ∈ dt, draw a topic zd from the multi-
nomial distribution Θt and for each word vd in the document
d:

(a) Draw a word vd from multinomial φt,zd ;
Fig. 1 illustrates the graphical representation of our Dynamic

Dirichlet Multinomial Mixture Model; given that documents are
short, and following [25], all words in the same document d are
drawn from the Multinomial distribution associated with the same
topic zd. The parameterization of the proposed dynamic topic model
is as follows:

Θt ∼ Dirichlet(αtΘt−1)

φt,z|βt,zφt−1,z ∼ Dirichlet(βt,zφt−1,z)

zd ∼ Multinomial(Θt)

vd|φt,zd ∼ Multinomial(φt,zd)

Note that in the generative process described above, there is a fixed
number of latent topics Z. A non-parametric Bayes version of our
dynamic topic model that automatically integrates over the number
of topics is possible, but we leave this as future work.

Inference for the short-term dependency DCT. The inference
of the distribution parameters of the model is intractable. Follow-
ing [14, 15, 19, 20] we employ a collapsed Gibbs sampler [9] for an
approximate inference. We adopt a conjugate prior (Dirichlet) for
the multinomial distributions, and thus we can easily integrate out
the uncertainty associated with φt,z and Θt. In this way we enable
sampling since we do not need to sample φt,z or Θt.

In the Gibbs sampling procedure we need to calculate the condi-
tional distribution P (zd|zt,−d,dt,Φt−1,Θt−1, αt, βt), at time t,
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Figure 1: Graphical representation of our dynamic Dirich-
let multinomial mixture clustering topic model, DCT. Note
that short term dependence DCT model excludes the two blue
curved lines; while long term dependence DCT model does in-
clude these two lines. The figure is best viewed in color.

where zt,−d represents the topic assignments for all documents in
dt except document d. We begin with the joint probability of the
current document set dt, P (dt, zt|Φt−1,Θt−1, αt, βt) (see Ap-
pendix A for the detail of the join probability), and using the chain
rule, we can obtain the following conditional probability,

P (zd|zt,−d,dt,Φt−1,Θt−1, αt, βt) ∝
mt,z + αt,zθt−1,z − 1∑Z

z=1(mt,z + αt,zθt−1,z)− 1

×
∏
v∈d

∏Nd,v

j=1 (nt,z,v,−d + βt,z,vφt−1,z,v + j − 1)∏Nd
i=1(nt,z,−d + i− 1 +

∑V
v=1 βt,z,vφt−1,z,v)

,

(5)

wheremt,z is the total number of documents in dt assigned to topic
z, Nd,v is the number of word v in the document d, nt,z,v,−d is the
total number of the word v assigned to topic z except that in d, and
nt,z,−d is the total number of documents assigned to z except d.
Detailed derivation of Gibbs sampling for our proposed DCT model
is provided in Appendix A. During sampling, at each iteration, the
precision parameters αt and βt can be estimated by maximizing the
joint distribution P (dt, zt|Φt−1,Θt−1, αt, βt). We apply fixed-
point iteration to get the optimal αt and βt at time t. The following
update rule of αt for maximizing the joint distribution in our fixed-
point iteration is derived by applying two bounds in [18],

αt,z ←
αt,z (Ψ(mt,z + αt,zθt−1,z)−Ψ(αt,zθt−1,z))

Ψ(
∑Z
z=1 mt,z + αt,zθt−1,z)−Ψ(

∑Z
z=1 αt,zθt−1,z)

,

where Ψ(·) defined by Ψ(x) = ∂ log Γ(x)
∂x

is the digamma function;
whereas the following update rule of βt is,

βt,z,v ←
∑Z
z=1 βt,z,vφt−1,z,vAt,z,v∑Z

z=1 φt−1,z,vBt,z,v
,

where At,z,v = Ψ(nt,z,v + βt,z,vφt−1,z,v) − Ψ(βt,z,vφt−1,z,v),
Bt,z,v = Ψ(

∑V
v=1 nt,z,v+βt,z,vφt−1,z,v)−Ψ(

∑V
v=1 βt,z,vφt−1,z,v)

and nt,z,v is the number of word v assigned to topic z in stream dt.

Algorithm 1: Inference for the Dynamic Dirichlet Multinomial
Mixture Model at time t.

Input : Previous topic distribution Θt−1

Previous word distribution specific to topics Φt−1

A set of short documents dt at time t
Initialized αt and βt
Number of iterations Niter

Output: Current topic distribution Θt

Current word distribution specific to topics Φt

Documents’ probabilities to each topic at time t,
P (z|t, d)

1 Initialize topic assignments randomly for all documents in dt
2 for iteration = 1 to Niter do
3 for d = 1 to |dt| do
4 draw zd from P (zd|zt,−d,dt,Φt−1,Θt−1, αt, βt)
5 update mt,zd and nt,zd,v
6 update αt and βt
7 Compute the posterior estimates Θt and Φt

8 Compute P (z|t, d)

Our derivation of the update rules forαt and βt, and the two bounds
used in deviating the update rules are detailed in Appendix B. An
overview of our proposed collapsed Gibbs sampling algorithm, in-
cluding the input and output, is shown in Algorithm 1.

4.3 Long-term Dependency DCT
Modeling long-term dependency. So far the distributions Θt and
Φt depend on the previous time-step distributions. Research has
shown that topic distributions - or the interests of a user on a topic
when searching for information - may depend on a longer time-step
history. We model such a long-term (L-steps) dependency DCT
model on the basis of the distribution priors as follows:

P (Θt|{Θt−l, αt,l}Ll=1) ∝
Z∏
z=1

θ

(∑L
l=1 αt,z,lθt−l,z

)
−1

t,z . (6)

The mean in this case is proportional to the weighted sum of the
past L “topic trends” in the documents, and αt,l = {αt,z,l}Zz=1

represents how the topics at time t are related to the l-previous top-
ics. For a comparison with the short-term dependency model refer
to Eq. (3) and Eq. (6). Further, long-term dependency reduces the
information loss and the bias of the inference due to the multiple
estimates.

Similarly, the Dirichlet prior of the topic trends φt,z at t can be
modified such that φt,z depends on the pastL topic trends {φt−l,z}Ll=1

as well. By doing so, we can make the inference more robust. Thus,
we have:

P (φt,z|{φt−l,z, βt,z,l}Ll=1) ∝
V∏
v=1

φ

(∑L
l=1 βt,z,v,lφt−l,z,v

)
−1

t,z,v ,

(7)
where βt,z,l = {βt,z,v,l}Vv=1 represents how the word distribution
over topics at time t are related to the l-previous one.

Inference for the long-term dependency DCT. The parameters
Θt and φt,z in Eq. (6) and Eq. (7) can be integrated in the ex-
act same way as before (since priors are still Dirichlet distributed)
and Θt and φt,z at time t are inferred using the proposed Gibbs
sampling in Algorithm 1. The only difference lies in the way we
sample the latent topic for each document (step 4 in Algorithm 1)
and the update rules for the priors (step 6 in Algorithm 1). Similar



to Eq.(5), we sample a latent topic for a document d by:

P (zd|zt,−d,dt, {Φt−l,Θt−l, αt,l, βt,l}Ll=1) ∝

mt,z +
∑L
l=1 αt,z,lθt−l,z − 1∑Z

z=1(mt,z +
∑L
l=1 αt,z,lθt−l,z)− 1

×

∏
v∈d

∏Nd,v

j=1 (nt,z,v,−d +
∑L
l=1 βt,z,v,lφt−l,z,v + j − 1)∏Nd

i=1(nt,z,−d + i− 1 +
∑V
v=1

∑L
l=1 βt,z,v,lφt−l,z,v)

.

(8)

The derivation of Eq. (8) is similar to that of Eq. (5) (see Ap-
pendix A). Again, we update αt,z,l in Eq. (8) using the two bounds
in [18] with fixed-point iteration such that:

αt,z,l ←
αt,z,lCt,z
Dt,z −D′t,z

,

whereCt,z = Ψ(mt,z+
∑L
l=1 αt,z,lθt−l,z)−Ψ(

∑L
l=1 αt,z,lθt−l,z),

and Dt,z = Ψ(
∑Z
z=1 mt,z +

∑L
l=1 αt,z,lθt−l,z) and D′t,z =

Ψ(
∑Z
z=1

∑L
l=1 αt,z,lθt−l,z). Similarly, we update βt,z,v,l in (8)

with fixed-point iteration by:

βt,z,v,l ←
∑Z
z=1 βt,z,v,lφt−l,z,vA

′
t,z,v∑Z

z=1 φt−l,z,vB
′
t,z,v

,

whereA′t,z,v = Ψ(nt,z,v+
∑L
l=1 βt,z,v,lφt−l,z,v)−Ψ(

∑L
l=1 βt,z,v,l

φt−l,z,v), andB′t,z,v = Ψ(
∑V
v=1 nt,z,v+

∑L
l=1 βt,z,v,lφt−l,z,v)−

Ψ(
∑V
v=1

∑L
l=1 βt,z,v,lφt−l,z,v). Given the space limitation, we

do not show the derivations of the update rules forαt,z,l and βt,z,v,l,
as they are similar to those for αt,z and βt,z,v in our short term de-
pendency DCT model (see Appendix B).

4.4 Clustering
Now, we can infer the dynamic topic distribution at time t, Θt

in our short-term dependency DCT model as,

θt,z =
mt,z + αt,zθt−1,z∑Z
z=1 mt,z + αt,zθt−1,z

=
mt,z + αt,zθt−1,z

mt +
∑Z
z=1 αt,zθt−1,z

,

wheremt is the total number of documents in dt, and infer a multi-
nomial distribution over words for topic z at time t as,

φt,z,v =
nt,z,v + βt,z,vφt−1,z,v

nt,z +
∑V
v=1 βt,z,vφt−1,z,v

, (9)

where nt,z is the number of words assigned to topic z at time t.
Similarly, we can infer the dynamic topic distribution at time t in
our long-term dependency DCT model as,

θt,z =
mt,z +

∑L
l=1 αt,z,lθt−l,z

mt +
∑Z
z=1

∑L
l=1 αt,z,lθt−l,z

,

and the multinomial distribution over words for topic z at time t,

φt,z,v =
nt,z,v +

∑L
l=1 βt,z,v,lφt−l,z,v

nt,z +
∑V
v=1

∑L
l=1 βt,z,v,lφt−l,z,v

. (10)

As one can observe in all equations for the two models, the short-
term model is just a special case of the long-term one for L = 1.

Having computed θt,z and φt,z,v , we can compute the probabil-
ity that a document d is relevant to topic zd at time t in the stream
dt, P (zd|t, d) as:

P (zd|t, d) =

P (zd|zt,−d,dt, {Φt−l,Θt−l, αt,l, βt,l}Ll=1)∑Z
z′
d
=1 P (z′d|zt,−d,dt, {Φt−l,Θt−l, αt,l, βt,l}Ll=1)

,
(11)

whereP (zd|zt,−d,dt, {Φt−l,Θt−l, αt,l, βt,l}Ll=1) can be obtained
by Eq. (5) and Eq. (8) for the short- and long-term dependency
DCT model, respectively. Finally, the document d in stream dt at t
is clustered to cluster c′z , i.e., the topic z = arg maxzd P (zd|t, d).

5. EXPERIMENTAL SETUP
Ideally, we would like to evaluate the performance of our dy-

namic clustering model by directly comparing the clustering result
with ground truth labels in a streaming short text corpus. However,
to the best of our knowledge, there is no such collection available
to this date; obtaining cluster labels for all documents in a stream
and all points in time is rather expensive. Instead, we perform an
extrinsic evaluation of the proposed model: (a) we incorporate the
clustering algorithm derived by the DCT model into a cluster-based
query likelihood model for ad-hoc retrieval [5, 21], and test the
clustering quality on the basis of retrieval performance, and (b) we
test the ability of the DCT generative model to predict the observed
data on the basis of perplexity [2, 3]. We compare the performance
of our model with other state-of-the-art clustering models.

The cluster-based ad-hoc retrieval model [21] used in our exper-
imental setup is the following:

P (q|t, d) =
∏
v∈q

P (v|t, d)n(v,q), (12)

where n(v, q) is the term frequency of term v in query q, and
P (v|t, d) is the probability of document d ∈ dt being relevant to
the query term v, which is computed by using a Dirichlet smooth-
ing language model [5] as,

P (v|t, d) = λPCluster(v|t, d)+

(1− λ)

(
Nd

Nd + µ
PML(v|t, d) +

(
1− Nd

Nd + µ

)
PML(v|dt)

)
(13)

where λ is a free parameter, µ is a Dirichlet prior in language
model [5], and PML(v|t, d), PML(v|dt) and PCluster(v|t, d) are the
maximum likelihood estimates of word v in the document d, in the
current short document stream dt and in the document d in terms
of clusters at time t, respectively. According to the cluster-based
retrieval model proposed in [21], PCluster(w|t, d) is computed by,

PCluster(v|t, d) =

Z∑
z=1

P (v|t, d, z)P (z|t, d),

where P (v|t, d, z) is the probability of word v being relevant to
topic z at time t, and P (z|t, d) the probability of document d being
assigned to topic z. When applying the proposed DCT clustering
model, for instance, we set P (v|t, d, z) = φt,z,v , where φt,z,v
is defined in Eq. (9) and Eq. (10) for the short and long term de-
pendence DCT models, respectively, while P (z|t, d) is defined in
Eq. (11), for the two models, respectively.

5.1 Research Questions
The research questions we investigate in experimental section of

the paper are:

On the basis of ranking performance:

RQ1: How does the proposed DCT clustering model per-
form compared to state-of-the-art clustering algorithms
in searching a short-text document stream?

RQ2: Is the performance consistent across different user queries?
RQ3: How does the performance of the long-term depen-

dence DCT model compares to that of the short-term
dependence DCT model?



RQ4: What is the impact of the free parameter λ in Eq. (13)
when applying the DCT model on cluster-based ad-hoc
retrieval?

RQ5: Is the performance of cluster-based ad-hoc retrieval
sensitive to the number of clusters used in the DCT
model?

On the basis of the generative model:

RQ6: What is the performance of the generative DCT model
compared to other baseline topic models in terms of
the likelihood of generating the top-k documents (mea-
sured by perplexity [3])?

5.2 Data Set
One of the key criteria for a suitable test collection for our ad-hoc

retrieval task is the dynamic nature of the intent of a users’ query.
That is we make the assumption that for the same query, e.g. Egypt,
the intent may change over time (something that we hope to be re-
flected in the identified dynamic topic distribution). Publicly avail-
able labeled corpora, such as Tweets2011 and Tweets2013 used for
ad hoc retrieval in TREC 2011–2015 Microblog track [16], have
been constructed however by judging documents against a static
query intent; furthermore the time-span of the collection is rela-
tively small (16 and 59 days, respectively).

To allow for a dynamic query intent we construct a new test col-
lection based on a publicly available corpus of Twitter posts (an
1% sample of all tweets). 1 The corpus has been collected between
February 1, 2015 and April 30, 2015, covering a period of 90 days.
Most of the tweets are written in English; we remove non-English
tweets and retweets to end up with 369 million tweets. We fol-
low Fisher et al. [8] and generated queries and relevance labels as
follows: (a) Manual selected hashtags on topics of general inter-
est, such as “#Apple” and “#Egypt” are transformed into keyword
queries. (b) Given a query at time t, we label the top-k documents
retrieved by a time-sensitive language model (see Section 5), result-
ing in the query-document ground truth used in our experiments.
Assessors are university students employed remotely, while no spe-
cific intent for a query was provided to them. Therefore, it was up
to their own judgment to decide what constitutes relevant and what
not. To enable the possibility of query intent drifting relevance
judgments were not obtained retrospectively (i.e. at the end of the
90 days period) but we simulated a streaming scenario and obtained
labels at 20-day intervals2. This resulted in 5 sets of ground truth
data: on February 9th, March 1st, March 21st, April 10th, and April
30th of 2015. Our test collection includes 107 queries, and 5 sets
of (disjoint) ground truth labels for each one of them.

5.3 Baselines, Evaluation Metrics, and Setting
We compare the DCT 3 model with a number of baselines and

state-of-the-art algorithms:

Language Model (LM) [5]: Directly ranks documents by their rel-
evance scores computed by a multinomial query likelihood
model - Eq. (12) and (13) after removing PCluster(v|t, d).

Time-aware Microblog Search (TMS) [7]: Based on the tempo-
ral cluster hypothesis that relevant documents tend to clus-
ter together in time,first adopts a feedback framework where

1https://archive.org/details/twitterstream
2Applying shorter intervals requires more efforts of manual la-

beling and we found that it yielded not significantly different results
in many cases.

3The code of the DCT topic model is available at https://
bitbucket.org/sliang1/dct/get/DCT.zip

temporal features are extracted from an initial ranked list of
documents and then reranks this list to produce a final rank-
ing.

Laten Dirichlet Allocation (LDA) [21]: Clusters documents based
on LDA and ranks them by a cluster-based document re-
trieval model (Eq. (12) and (13)), in the same way DCT ranks
documents.

Dirichlet Multinomial Mixture Model (DMM) [25]: Clusters doc-
uments based on a vanilla Dirichlet multinomial mixture model
(without the temporal dependencies introduced by this paper)
and ranks them by Eq. (12) and (13).

Topic Tracking Model (TTM) [10]: Clusters documents based on
a dynamic topic tracking model that captures temporal de-
pendencies between long text streams, and ranks them by
Eq. (12) and (13).

LDA, DMM, TTM and our proposed DCT use the same retrieval
model, i.e., Eq.(13), to compute the relevant scores for the docu-
ments; they only differ in the way they perform clustering. For
all methods including the vanilla LM, we define the probability
of a term given a document and a point in time as PML(v|t, d) =

PML(v|d)·b−(t−td), where b is a base parameter that determines the
rate of the recency decay and td is the creation time of document d.
In the remainder of this paper we refer to the cluster-based retrieval
models with the name of the clustering method they employ, that
is, LDA, DMM, TTM and DCT.

The evaluation metrics used to assess the performance of the
ranking algorithms are the ones widely used in TREC 2011—2015
Microblog tracks [16]: NDCG [12], MAP [5], Recall, R-prec, and
P@k (Precision at k) [5]. R-Prec is the precision afterR documents
have been retrieved, where R is the total number of relevant doc-
ument for the query. We set k to 30 to align with the cut-off used
in the TREC Microblog tracks [16]. The statistical significance of
the observed differences between the performance of two ranking
algorithms across the 107 queries is tested using a two-tailed paired
t-test and is denoted using N (or H) for α = .01, and M (and O) for
α = .05.

Experiments are run as follows: First, we obtain the top-k docu-
ments, dt, in response to a user’s query using a vanilla query likeli-
hood model at time t. In our experiments we used k = 500, but we
experimented with other values for k; for any k > 100 the results of
our experiments remained stable. For cluster-based retrieval, topics
are then inferred over the documents in dt, and (a) documents are
re-ranked based on the cluster-based query likelihood model, and
rankings are evaluated on the basis of different information retrieval
metrics, and (b) we calculate the likelihood of observing these doc-
uments in the collection on the basis of the underlying generative
model. We use a 60/30/10 split of our collection for training, val-
idation and testing, respectively. We train the vanilla LM, LDA,
DMM, TTM, and DCT for different values of the parameters λ,
and µ in Eq. (13); λ varies from 0 to 1.0 and µ from 0 to 1000.
The optimal λ and µ values are decided based on the validation
set, and evaluated on the test set. The training/validation/test splits
are permuted until all 107 queries have been chosen once for the
test set. We repeat the experiments 10 times and report the average
evaluation measures.

6. RESULTS
We start by comparing the retrieval performance of DCT with the

rest of the methods in Section 5.3 (RQ1), and the persistence of the
performance across queries (RQ2). We then analyse the effect of

 https://archive.org/details/twitterstream
https://bitbucket.org/sliang1/dct/get/DCT.zip
https://bitbucket.org/sliang1/dct/get/DCT.zip


Table 2: Mean performance over the five test cutoff days. The
best performance per metric is in boldface. Statistically signifi-
cant differences between DCT and the best baseline, TTM, are
marked in the upper right-hand corner of DCT’s performance
scores.

NDCG MAP Recall R-prec P@30

LM .4446 .2241 .3092 .3534 .2772
LDA .5018 .2749 .3439 .3976 .3171
TMS .5286 .2991 .3604 .4152 .3353
DMM .5715 .3416 .3854 .4460 .3685
TTM .5936 .3638 .4019 .4648 .3928
DCT .6421N .4132N .4298N .5021N .4277N

various parameters in our model: the dependency length (RQ3), the
mixture parameter λ (RQ4), and the predefined number of topics
(RQ5). Last, we test the generalisability of the proposed generative
model in terms of perplexity (RQ6).

6.1 The Ranking Performance of DCT
RQ1: We compare the ranking performance of the short term

DCT cluster-based retrieval model with the rest of the methods in
Section 5.3.

Table 2 reports the performance averaged across all five testing
time cutoffs. The ranking of models with respect to the retrieval
performance is consistent across the different evaluation measures,
and in particular the following order is observed: DCT > TTM >
DMM > TMS ≥ LDA > LM. Here > denotes statistically sig-
nificantly better performance at a significance level of 99%, and
≥ denotes statistically significantly better performance at a signif-
icance level of 95%. To get a better insight on the persistence of
the results across the five testing time cutoffs, we compare the per-
formance of the six algorithms on a per cutoff basis. We visualise
the results in Fig. 2 in terms of five heat maps, one per metric, so
that the relative performance per model and per time cutoff can be
observed, by examining the intense of the color (dark blue trans-
lates to high measure values, and light blue to low measure val-
ues). The five heat maps lead to the exact same findings per time
cutoff to those when the average values were considered: in most
cases, DCT statistically significantly outperforms TTM, which is
followed by DMM, TMS, LDA, and LM.

The finding DCT > TTM in both Table 2 and Fig. 2 illustrates
that the way we track the changes of topics specific to a query in
DCT works better than the way it is done by TTM which focuses on
long documents. The finding DCT > DMM illustrates that DCT
integrates time information better in the inference of topics distri-
bution at time t compared to DMM, which ignores time informa-
tion. An interesting observation in Fig. 2 is that as time progresses,
the performance of both DCT and all other baselines slightly de-
creases due to the fact that more and new intents underlying a given
query appear and make the retrieval task more challenging. Instead
the performance of DCT remains stable across all the test time cut-
offs.

6.2 Query-level Analysis
RQ2: We take an in-depth view of the improvements of DCT

performance over the best baseline (TTM) on a per query basis.
Fig. 3 shows the per query performance differences in terms of

all the metrics, averaged across all the test days. The number of
queries on which DCT outperforms TTM is larger than the number
of queries on which TTM outperforms DCT, for every metric. Fur-
ther, the positive differences of DCT against TTM are larger than
the negative differences in most case. Both of these findings fur-
ther support the conclusion that DCT can effectively capture the

topic distribution at a given time and query for clustering short
documents in streams compared to state-of-the-art dynamic or non-
dynamic clustering topic models for long or short text documents.
There are only very few cases in which DCT performs worse than
TTM.

6.3 Impact of Dependency Length
RQ3: We compare the short-term DCT with the long-term DCT

(DCT-L with L being the length of dependency under considera-
tion). We vary the length of dependency from 1 to 8 time-steps.

Fig. 4 shows the performance on the metrics, averaged across the
five test cutoff days. It is clear from the figure that the longer the de-
pendences captured by the model the better the performance of the
ranking algorithm. This is especially true for L = 1, . . . , 4, while
after that the performance reaches a plato. This illustrates that our
DCT model can enhance the performance of clustering when past
distribution information is integrated in the model.

In the remaining of the analysis we will focus on the short term
DCT model so that we can study the performance of our dynamic
topic model independently of the length of the dependency. The
performance of DCT-L is at least as good as the performance of
the short-term DCT.

6.4 Contribution of Clustering Ingredient
RQ4: We vary λ in Eq. (13) and measure the average perfor-

mance of our model to analyze the contribution of clustering ingre-
dient in the cluster-based retrieval model.

Fig. 5 depicts the performance on all metrics. For λ = 0, the
performance of DCT and the rest of the methods is identical with
the time-sensitive language model (LM) performance, as expected.
As λ increases from 0 to 0.6, giving more weight to the cluster
terms, the performance of all cluster-based methods improves, with
the DCT clusters providing more relevant to the query terms. This
leads to a faster improvement of DCT compared to the rest of the
methods (TTM, DMM, and LDA), which demonstrates the homo-
geneity of clusters on the query topic. The performance of all al-
gorithms drops as expected when larger weights are given to the
cluster terms. However, even when the query is completely ig-
nored (λ = 1) the DCT clusters continue to provide good on-topic
terms outperforming the language model method in the task of re-
ranking. Again, these findings strengthen our conclusion that in-
tegrating high quality clustering information, as provided by our
dynamic clustering model, can enhance the performance of ad-hoc
retrieval in short document streams.

6.5 Effect of the Number of Topics
RQ5: We examine the effect of the number of latent topics

passed as an input parameter to DCT and the rest of the clustering
models on the overall retrieval performance. We vary the number
of latent topics from 2 to 16 for each query, and compare the per-
formance in terms of all the metrics, averaged across all five test
cutoff days.

As illustrated by Fig. 6 when only two latent topics are mod-
eled, the four clustering models yields almost the same perfor-
mance; if the number of available topics to be inferred is small
DCT does not offer any improvements compared to other methods.
With the number of latent topics increasing to 4 and 8, the posi-
tive performance differences between DCT and baseline methods
also increases. When the number of latent topics further increases
(e.g. between 8 to 16), the performance of all the clustering models
reaches a plato. This also demonstrates the merit of the proposed
DCT model: it is robust and insensitive to the number of latent top-
ics and once enough latent topics are used it is able to improve the



(a) NDCG (b) MAP (c) Recall (d) R-prec (e) P@30

Figure 2: Heat maps of retrieval performance (one per metric); columns represent testing cutoff days (February 9, March 1, March 21, April 10,
and April 30, respectively); rows represent methods (DCT, TTM, DMM, TMS, LDA, and LM, going from top to bottom).
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Figure 3: Per-query retrieval performance differences between DCT and TTM, averaged across all test days. A bar above the line y=0 indicates that
DCT outperforms TTM, while the opposite is true for bars below y=0.
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Figure 4: Mean retrieval performance of the short-term and the long-term DCT with the dependency length L varying between 2 and 8.

performance of the cluster-based retrieval model and work better
than the state-of-the-art dynamic and non-dynamic clustering mod-
els in short document streams.

6.6 Perplexity
RQ6: Last, we evaluate the performance of DCT and the base-

line models in terms of perplexity, which is widely used as an eval-
uation metric in previous topic modeling work [2, 3]. The perplex-
ity used in language modeling, is monotonically decreasing with
the likelihood of the documents, and is algebraically equivalent to
the inverse of the geometric mean per-word likelihood. The per-
plexity [3] that is widely used to evaluate the generalization per-
formance of many topic models is computed as Perplexity(dt) =

exp
(
−
∑|dt|
d=1

∑
v∈d log p(v|t, d)∑|dt|
d=1 Nd

)
, where Nd is the number of

words in document d, and p(v|t, d) =
∑
z p(v|t, d, z)p(z|t, d). A

lower perplexity score indicates better generalization performance.
Fig. 7 shows the mean perplexity performance of DCT and the
baseline models, over the five test cutoff days with the number of
latent topics ranging between 2 and 16 for each query. As it can
be observed, DCT consistently performs better than the rest of the
models, with the performance flattening out when the number of
topics is equal or more than 8.

7. CONCLUSION
Clustering technologies have been widely used in a number of

text related applications including information retrieval, and sum-
marization. In this work we studied the problem of clustering short
document streams, and proposed a new dynamic Dirichlet multi-

nomial mixture clustering topic model, DCT, to effectively handle
both the textual sparsity of short documents, and the dynamic na-
ture of topics across time. The proposed clustering model can cap-
ture short-term and long-term trends in topics. We evaluated the
performance of the proposed model in terms of retrieval effective-
ness. We conducted experiments over a Twitter streaming dataset,
which was manually labeled. To allow possible drifts in the query
intent across time we did not provide any static query intent de-
scription to the assessors. We compared the performance of the
proposed model with a state-of-the-art dynamic topic model that in-
fers clusters in the context of long documents, a static topic model
that infers clusters in static short document sets, a state-of-the-art
time-aware microblog search model, an LDA topic model, and a
time-sensitive language model. Our experimental results demon-
strate the effectiveness of the proposed dynamic clustering model.

As future work we intent to automatically estimate the (dynamic)
number of topics in our clustering model in the context of short
document streams, and use the proposed model to improve the per-
formance of other text-related applications such as tweet summa-
rization, sentiment analysis, and query suggestion in the context of
short document streams.
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Figure 5: Mean retrieval performance of DCT and the state-of-the-art topic models when varying the smoothing parameter λ.
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APPENDIX
A. GIBBS SAMPLING DERIVATION FOR

DYNAMIC CLUSTERING TOPIC MODEL
We begin with the joint distribution P (dt, zt|Φt−1,Θt−1, αt, βt).

We can take advantage of conjugate priors to simplify the integrals. We
use the abbreviation φ = φt−1,z,v in the following. All other symbols are
defined in Section 3 and 4. Due to space limitation, we only provide the
derivation for the short term dependence DCT model, and the derivation for
the long term DCT model is actually similar.

P (dt, zt|Φt−1,Θt−1, αt, βt) = P (dt|zt,Φt−1, βt)P (zt|Θt−1, αt)

=

∫
P (dt|zt,Φt)P (Φt|Φt−1, βt)dΦt

∫
P (zt|Θt)P (Θt|Θt−1, αt)dΘt



=

∫ |dt|∏
d=1

Nd∏
i=1

P (vt,di|φt,zdi )
Z∏
z=1

P (φt,z |φt−1,z , βt)dΦt

×
∫ |dt|∏

d=1

P (zt,d|θt)P (θt|θt−1, αt)dΘt

=

∫ Z∏
z=1

V∏
v=1

φ
nt,z,v
t,z,v

Z∏
z=1

P (φt,z |φt−1,z , βt)dΦt

×
∫ |dt|∏

d=1

P (zt,d|θt)P (θt|θt−1, αt)dΘt

=

∫ Z∏
z=1

V∏
v=1

φ
nt,z,v
t,z,v

Z∏
z=1

(
Γ(
∑V
v=1 βt,z,vφ)∏V

v=1 Γ(βt,z,vφ)

V∏
v=1

φ
βt,z,vφ−1
t,z,v

)
dΦt

×
∫ Z∏

z=1

θ
mt,z
t,z

(
Γ(
∑Z
z=1 αt,zθt−1,z)∏Z

z=1 Γ(αt,zθt−1,z)

)
Z∏
z=1

θ
αt,zθt−1,z−1
t,z dΘt

=

Z∏
z=1

Γ(
∑V
v=1 βt,z,vφ)∏V

v=1 Γ(βt,z,vφ)

Z∏
z=1

∫ V∏
v=1

φ
nt,z,v+βt,z,vφ−1
t,z,v dΦt

×
Γ(
∑Z
z=1 αt,zθt−1,z)∏Z

z=1 Γ(αt,zθt−1,z)

∫ Z∏
z=1

θ
mt,z+αt,zθt−1,z−1
t,z dΘt

=

Z∏
z=1

Γ(
∑V
v=1 βt,z,vφ)∏V

v=1 Γ(βt,z,vφ)

Z∏
z=1

∏V
v=1 Γ(nt,z,v + βt,z,vφ)

Γ(
∑V
v=1 nt,z,v + βt,z,vφ)

×
Γ(
∑Z
z=1 αt,zθt−1,z)∏Z

z=1 Γ(αt,zθt−1,z)

∏Z
z=1 Γ(mt,z + αt,zθt−1,z)

Γ(
∑Z
z=1mt,z + αt,zθt−1,z)

.

Applying the chain rule, we can obtain the conditional probability:

P (zd = z|zt,−d,dt,Φt−1,Θt−1, αt, βt) =
P (zt,dt|Φt−1,Θt−1,αt,βt)

P (zt,−d,dt|Φt−1,Θt−1,αt,βt)

∝
P (zt,dt|Φt−1,Θt−1, αt, βt)

P (zt,−d,dt,−d|Φt−1,Θt−1, αt, βt)

=
Z∏
z=1

∏V
v=1 Γ(nt,z,v + βt,z,vφ)

Γ(
∑V
v=1 nt,z,v + βt,z,vφ)

×
∏Z
z=1 Γ(mt,z + αt,zθt−1,z)

Γ(
∑Z
z=1mt,z + αt,zθt−1,z)

/
Z∏
z=1

∏V
v=1 Γ(nt,z,v,−d + βt,z,vφ)

Γ(
∑V
v=1 nt,z,v,−d + βt,z,vφ)

×
∏Z
z=1 Γ(mt,z,−d + αt,zθt−1,z)

Γ(
∑Z
z=1 mt,z,−d + αt,zθt−1,z)

.

Because document d is associated with its own topic z, it becomes

=

∏V
v=1 Γ(nt,z,v + βt,z,vφ)

Γ(
∑V
v=1 nt,z,v + βt,z,vφ)

×
Γ(mt,z + αt,zθt−1,z)

Γ(
∑Z
z=1mt,z + αt,zθt−1,z)

/
∏V
v=1 Γ(nt,z,v,−d + βt,z,vφ)

Γ(
∑V
v=1 nt,z,v,−d + βt,z,vφ)

×
Γ(mt,z,−d + αt,zθt−1,z)

Γ(
∑Z
z=1 mt,z,−d + αt,zθt−1,z)

=
Γ(mt,z + αt,zθt−1,z)

Γ(mt,z + αt,zθt−1,z − 1)

Γ(
∑Z
z=1(mt,z + αt,zθt−1,z)− 1)

Γ(
∑Z
z=1mt,z + αt,zθt−1,z)

×
∏V
v=1 Γ(nt,z,v + βt,z,vφ)∏V

v=1 Γ(nt,z,v,−d + βt,z,vφ)

Γ(
∑V
v=1 nt,z,v,−d + βt,z,vφ)

Γ(
∑V
v=1 nt,z,v + βt,z,vφ)

=
Γ(mt,z + αt,zθt−1,z)

Γ(mt,z + αt,zθt−1,z − 1)

Γ(
∑Z
z=1(mt,z + αt,zθt−1,z)− 1)

Γ(
∑Z
z=1mt,z + αt,zθt−1,z)

×
∏
v∈d Γ(nt,z,v + βt,z,v)∏

v∈d Γ(nt,z,v,−d + βt,z,v)

Γ(nt,z,−d +
∑V
v=1 βt,z,vφ)

Γ(nt,z,−d +Nd +
∑V
v=1 βt,z,vφ)

.

Applying Γ(x) = (x− 1)Γ(x− 1) and Γ(x+m) =
m∏
i=1

(x+ i− 1)Γ(x),

the above becomes

=
mt,z + αt,zθt−1,z − 1∑Z

z=1(mt,z + αt,zθt−1,z)− 1

∏
v∈d Γ(nt,z,v+βt,z,vφ)∏

v∈d Γ(nt,z,v,−d+βt,z,vφ)∏Nd
i=1(nt,z,−d + i− 1 +

∑V
v=1 βt,z,vφ)

=
mt,z + αt,zθt−1,z − 1∑Z

z=1(mt,z + αt,zθt−1,z)− 1

×
∏
v∈d

∏Nd,v

j=1 (nt,z,v,−d + βt,z,vφ+ j − 1)∏Nd
i=1(nt,z,−d + i− 1 +

∑V
v=1 βt,z,vφ)

B. DERIVATION OF THE UPDATE RULES
We apply a fixed-point iteration for estimating the parameters αt and βt

by maximizing the joint distribution P (dt, zt|Φt−1,Θt−1, αt, βt). Here
we only show the derivation for short term dependence DCT model, while
that for long term dependence DCT model is similar. Instead of maximizing
the joint distribution directly, we try to maximize the following:

logP (dt, zt|Φt−1,Θt−1, αt, βt)

=

Z∑
z=1

log Γ(

V∑
v=1

βt,z,vφ)−
Z∑
z=1

log Γ(

V∑
v=1

nt,z,v + βt,z,vφ)

+

Z∑
z=1

V∑
v=1

log Γ(nt,z,v + βt,z,vφ)−
Z∑
z=1

V∑
v=1

log Γ(βt,z,vφ)

+ log Γ(

Z∑
z=1

αt,zθt−1,z,v)− log Γ(

Z∑
z=1

mt,z + αt,zθt−1,z)

+

Z∑
z=1

log Γ(mt,z + αt,zθt−1,z)−
Z∑
z=1

log Γ(αt,zθt−1,z)

Using the bounds [18]: for any x∗ ∈ R+, n ∈ Z+ and x∗’s estimation x:

log Γ(x∗)− log Γ(x∗ + n) ≥ log Γ(x)− log Γ(x+ n)

+ (Ψ(x+ n)−Ψ(x)) (x− x∗),

and

log Γ(x∗ + n)− log Γ(x∗) ≥ log Γ(x+ n)− log Γ(x)

+ x (Ψ(x+ n)−Ψ(x)) (log x∗ − log x),

supposing α∗t,z is the optimal parameter in the next fixed-point iteration, it
follows that

logP (dt, zt|Φt−1,Θt−1, {αt,1, . . . α∗t,z , . . . , αt,Z}, βt) ≥ B(α∗t,z)

=αt,zθt−1,z (Ψ(mt,z + αt,zθt−1,z)−Ψ(αt,zθt−1,z)) logα∗t,zθt−1,z

− α∗t,zθt−1,z

(
Ψ(

Z∑
z=1

mt,z + αt,zθt−1,z)

)
+ C,

whereC is function not containing the term α∗t,z and thus will be integrated

out by taking ∂(·)
∂α∗t,z

to α∗t,z . Then, we let

∂B(α∗t,z)

∂α∗t,z
=
αt,zθt−1,z (Ψ(mt,z + αt,zθt−1,z)−Ψ(αt,zθt−1,z))

α∗t,z

− θt−1,z

(
Ψ(

Z∑
z=1

mt,z + αt,zθt−1,z)−Ψ(
Z∑
z=1

αt,zθt−1,z)

)
=0,

which results in

α∗t,z =
αt,z (Ψ(mt,z + αt,zθt−1,z)−Ψ(αt,zθt−1,z))

Ψ(
∑Z
z=1mt,z + αt,zθt−1,z)−Ψ(

∑Z
z=1 αt,zθt−1,z)

,

where Ψ(·) is the digamma function defined by Ψ(x) =
∂ log Γ(x)

∂x
.

Following the same derivation, again supposed β∗t,z,v is the optimal pa-
rameter in the next fixed-point iteration, we have

β∗t,z,v =

∑Z
z=1 βt,z,vφ

(
Ψ(nt,z,v + βt,z,vφ)−Ψ(βt,z,vφ)

)
∑Z
z=1 φ

(
Ψ(
∑V
v=1 nt,z,v + βt,z,vφ)−Ψ(

∑V
v=1 βt,z,vφ)

) .
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