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ABSTRACT
People often ask others for restaurant recommendations as a
way to discover new dining experiences. This makes restau-
rant recommendation an exciting scenario for recommender
systems and has led to substantial research in this area.
However, most such systems behave very di↵erently from
a human when asked for a recommendation. The goal of
this paper is to begin to reduce this gap.

In particular, humans can quickly establish preferences
when asked to make a recommendation for someone they do
not know. We address this cold-start recommendation prob-
lem in an online learning setting. We develop a preference
elicitation framework to identify which questions to ask a
new user to quickly learn their preferences. Taking advan-
tage of latent structure in the recommendation space using
a probabilistic latent factor model, our experiments with
both synthetic and real world data compare di↵erent types
of feedback and question selection strategies. We find that
our framework can make very e↵ective use of online user
feedback, improving personalized recommendations over a
static model by 25% after asking only 2 questions. Our
results demonstrate dramatic benefits of starting from of-
fline embeddings, and highlight the benefit of bandit-based
explore-exploit strategies in this setting.
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1. INTRODUCTION
Recommendation is an everyday process that frequently

touches people’s lives. Hence, it has seen tremendous re-
search interest (such as [9, 14]). Most work in recommen-
dation falls into two broad classes: Collaborative Filtering
starts with a set of user/item a�nity scores and assumes
that two users who agree about one item are more likely to
agree about another item; Content-Based Filtering models
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users by the characteristics of the items they like or dislike.
We note that neither model represents how real people make
recommendations, particularly in a cold-start setting where
the person making a recommendation does not know a lot
about the person asking for one.

Consider what would happen if a conference attendee in
your home town, whom you have never met before, asked
for a recommendation on where to eat dinner today. Most
likely, you would start with one or two clarifying questions,
perhaps whether the person likes seafood, or whether they
have a car. These questions would depend on the context;
for instance if there are great restaurants around the corner,
then whether they have a car would be irrelevant.

We argue that such an interaction can be represented
using online learning, where two types of learning are oc-
curring. First, the person making the recommendation is
learning about the preferences of the person asking. How-
ever, the attributes learned will be contextual, based on the
likely follow-on answers (such as the car question earlier).
Second, the person making the recommendation is learning
about which questions allow them to quickly reach a good
recommendation in the current context. In this paper, we
present a recommendation system that exhibits these two
types of learning. Further, the learning is online: It imme-
diately impacts future recommendations for this user, rather
than requiring a batch reprocessing of information learned.

We present a bandit-based approach for online recom-
mendation, applied to restaurant recommendation so as to
ground it in a specific application. Our approach builds
on top of prior work, such as [33], but learns to adapt the
recommendation space (user-item embedding) to its users
throughout their interactions. We use generalized Thomp-
son Sampling to systematically sample questions to ask the
user and to incorporate observed feedback. We further pro-
pose and compare a range of alternative question selection
strategies to identify characteristics of approaches that most
e↵ectively learn users’ preferences. We use a matrix factor-
ization approach [21, 29] to learn and adapt the embedding.

Our main contributions are four-fold. (1) We propose a
novel view of human-like recommenders that converse with
new users to learn their preferences. (2) We successfully
demonstrate a fully online learning approach for recommen-
dation – both using absolute and relative feedback. (3) We
propose a systematic approach to incorporating o✏ine data
to initialize online learning recommenders, and demonstrate
performance improvements, even using weakly labeled of-
fline data. (4) We propose a set of item selection strategies
for deciding what question to ask to a cold-start user to



most quickly infer preferences, and demonstrate benefits of
bandit-based strategies. Our extensive experiments on both
synthetic and real data evaluate each step of our approach.

Importantly, we note that this work is applicable to a wide
variety of recommendation scenarios. Here, we focus on one
such application, restaurant recommendation, where (1) we
study search logs to understand the space of real user needs;
(2) we use the insights to collect preference data in a user
study; (3) we use online behavioral data to initialize the
recommendation system; (4) we use both synthetic and user
study data to evaluate our approaches.

We now present related work (Section 2), followed by an
analysis of real-live restaurant search (3). We describe our
model (4) and empirical setup (5), and validate the model
on synthetic data (6). Finally, we evaluate on real data to
further empirically analyze our learning framework (7).

2. RELATED WORK
This paper builds on work in multiple active research ar-

eas. We review recent work in the most closely related areas.
O✏ine Recommenders. The wide interest in person-

alized recommendations has sparked substantial research in
this area [14]. The most common approaches are content-
based approaches [24] and collaborative filtering (CF) [9,
21]. Collaborative filtering, which powers most modern rec-
ommenders, uses an a-priori available set of user-item rat-
ings to learn the interdependencies among users and items.
It predicts a user’s rating on an item either via the neigh-
boring items’ ratings (neighbor-based [9, 28]) or by inferring
latent factors in a low-dimensional embedding (latent factor-
based [21, 29]). The majority of the work in recommenda-
tion has focused on o✏ine recommenders, i.e., building an
o✏ine model based on past user-item interactions, periodi-
cally retrained to incorporate new observations.

Online Recommenders. Recently, it has been recog-
nized that o✏ine recommender approaches (i) su↵er from
the cost of retraining the model, (ii) are built to optimize
o✏ine performance which does not necessarily match on-
line user behavior and (iii) fail to capture preference drifts.
These realizations have initiated developments towards build-
ing continuously learning (online) recommenders.

A recent line of work poses the problem in a contextual
bandit formulation [16, 31, 32], where items are seen as arms,
users as contexts, and the goal is to explore the arm space in
order to exploit the best performing arm for a given context.
Most work in this area relies on the availability of user/item
features and assumes that the reward of an arm for a given
context is a linear/logistic function of the concatenated fea-
ture of arm-context [16, 31]. [32] uses Gaussian processes to
allow feedback sharing among similar contexts and arms.

Using the CF point of view, [4] introduced an ✏-greedy on-
line user-user neighbor-based CF method. The first latent-
factor online recommender was introduced in [33], which
uses bandit strategies on top of Probabilistic Matrix Factor-
ization (PMF) [21]. This is the most closely related work
to ours. However, while [33] fixes the item latent factors
to those learned o✏ine, formulating the problem as a linear
bandit, our method fully online learns all user and item pa-
rameters, including the biases; [33] can be seen as special
case of our framework. In [13], the authors extend Thomp-
son Sampling for PMF with a Kalman filter to track chang-
ing preferences over time. This work is orthogonal to ours.

Preference Elicitation. The problem of eliciting user

feedback has long been of interest for a variety of tasks (e.g
[8]). To elicit the preferences of an existing or new user
(cold-start), a range of methods have been proposed, varying
from interview-based strategies (e.g [30]), to asking users to
rate some items, to active learning [26], entropy minimiza-
tion [27], picture-based [22], and explore-exploit strategies
on top of a latent factor model [33]. Our work is the first to
elicit users’ preferences by utilizing either absolute or rela-
tive feedback in a fully online setting.

Interactive Recommenders. There have been many
works (critique-based [7], constraint-based [10], dialog, utility-
based recommenders [19]) emphasizing the importance of
interactivity in recommenders so that the user has a more
active role over the recommendations. However, these works
rely on prior modeling of the items’ features, preventing the
flexibility in adaptation to a di↵erent domain; thus a com-
parison with them is out of the scope of this work.

In contrast, our work, in the same spirit as a recent line of
work [18, 11] initiated by [33], learns online the latent fac-
tors from PMF and uses these to do interactive preference
elicitation. These methods, although close in principle, have
significant di↵erences from our work.1 Briefly, in [18], the
authors focus on set-based feedback and propose a progres-
sive building of the user’s latent factor in each question. In
contrast, our work focuses on absolute and relative feedback
on (pairs of) items, and uses a preference elicitation phase
fully integrated with the online updates of the PMF model.
The method of [11] focuses on choice-based feedback and
updates online only the user’s latent factor. Neither of [11,
18] balance the exploration-exploitation tradeo↵.

3. UNDERSTANDING REAL USERS
A recommendation system that aims to satisfy real peo-

ple should reflect how real people look for recommendations.
Therefore, we start by analyzing restaurant-related search
behavior in a commercial Web search engine. Our goals
are two-fold. First, to gain insight into our target domain,
namely understand the criteria people use to choose restau-
rants2. Second, to identify questions we must ask users to
construct ground truth data for evaluating our system.

Given a large sample of all queries issued between 07/2014
and 07/2015, we filtered for those that contain restaurant or
dining, and terms such as for, near(by), next (to), close (to),
with and in. Let Q be the most frequent 10,000 such queries.

3.1 Query Annotation with Entities
We tagged the top several hundred queries from Q as con-

taining a location, name, cuisine, food type, or terms such as
best and menu. The dictionary of tags was not pre-specified
to avoid biasing our annotations due to prior beliefs about
categories people should be looking for. Rather, our method-
ology used content analysis [25] to develop a coding that
captures the dominant behaviors involved.

We found that 39% of queries specify a location, 19% a
restaurant name, 9% cuisine constraints, 7% have the term
best or other superlative. More rarely, queries specified food
ethnicity (2%), an adjective describing the restaurant (2%),
dish name (2%), decoration, etc. The most common term co-

1We plan to extend our framework to set and choice-based
feedback, to allow the comparison with [18, 11].
2Keeping in mind that these criteria to some degree reflect
users’ perception of the search engine and its capabilities.



Table 1: Contextual terms in restaurant related queries.
IN NEAR FOR WITH

nyc me wedding receptions party room
chicago by large group small private room
las vegas times square rich piano
houston here dessert live music
miami lax your 21st birthday someone
los angeles miami airport steak at lunch time a view
atlanta airport gluten free food play area
brooklyn fenway park valentine day in dallas banquet room

Table 2: Restaurant Feature Dictionaries (note: frequency
counts have been rescaled)

Cuisine Freq.

mexican 475

chinese 407

italian 381

thai 174

indian 144

japanese 125

Adj. Freq.

good 27

famous 13

nice 12

romantic 11

upscale 6

small 6

Food Freq.

seafood 139

sushi 40

steak 32

bbq 29

fish 24

tapas 19

occurences are location and name in the same query (29%),
cuisine and location (10%), and best and location (8%).

3.2 Understanding Common Phrases
The above statistics show that location is an important

factor in restaurant search. Hence we zoom in to discover the
specific ways in which people constrain locations. Similarly,
the context under which users search for a restaurant is a
second common constraint. We analyzed the specific terms
appearing after a variety of prepositions, and constructed a
dictionary of the most frequent contextual constraints.

A sample of these is shown in Table 1. For example, the
top places people search for restaurants in are nyc, chicago,
las vegas. Using the preposition ‘near’ to indicate location,
the majority of terms shows users want a restaurant near
me. Queries can also be very specific, e.g. searching for a
restaurant near points of interest (times square), airports
(miami airport, lax ), postal codes or entire addresses. The
contexts under which users search for restaurants vary from
an occasion (wedding reception), to dietary restrictions, to
type of meal or a group of people. People also search for
restaurants with live music, piano, a view etc.

3.3 Restaurant Feature Dictionaries
As user queries can be very specific (e.g., combining con-

straints, ‘adjective & dish & great & location’), we now
study the terms that people use to describe restaurants. We
annotated the top 1,013 phrases appearing before the word
‘restaurant’ or ‘dining’ in 5,000 queries from Q with a num-
ber of traits. The traits identified are related to food (cui-
sine, meal, dietary restrictions, quality e.g. organic, healthy,
bu↵et, menu), rating (e.g michelin star), atmosphere (view,
fancy or romantic), time/location (opening hours, decade
theme, time of the day) etc.

For every trait, we collected the most common terms. Ta-
ble 2 shows a few common examples, giving us a glimpse
into the most searched cuisines, food types, and adjectives.
Though not shown, top amenities searched are garden, jazz,
patio, ocean and top restaurant types are bar, fast food, cafe.

3.4 Outlook
Besides motivating our application scenario, this search

log analysis forms the basis of the user study in Section 7.
Given this understanding of what to ask people who look for
a restaurant, we also focus on how to ask it. In this work,

among the various combinations of the feedback type (ex-
plicit/implicit, absolute/relative/list) on the available con-
tent (explicit features/items/latent features), we elicit users’
preferences using explicit feedback from absolute and relative
questions about explicit items (e.g. restaurants).

4. MODEL
We next present our approach for determining ‘what to

ask’ and ‘how to ask’ as the key pieces of a conversational
recommender, starting with a high level picture of the en-
tire algorithm (Section 4.1). Then, we describe the pieces
in detail as we require (i) a model exploiting implicit struc-
ture among items and users to e�ciently propagate feedback
(Section 4.2); (ii) an explore-exploit approach to probe the
space of items, to allow continuous learning (Section 4.3) and
(iii) a feedback elicitation mechanism for selecting absolute
(Section 4.3) and relative questions (Section 4.4).

4.1 Overview
Our recommendation pipeline can be summarized as:

1. Pick a model (Absolute/Pairwise) (Sec. 4.2) and pref-
erence elicitation mechanism: Abs (Sec. 4.3) / Abs Pos

/ Abs Pos & Neg / Pairwise (Sec. 4.4).
2. Initialize model parameters using o✏ine data.
3. A new user arrives. Now iterate for a few questions3:

(a) Mechanism selects a question to ask

(b) User answers the question

(c) All model parameters are updated

(d) Remove the question from the allowed questions

4. System presents the final recommended list

The inner loop represents the ‘human in the loop’ present in
all interactive systems, i.e., we make an intervention which
a↵ects the user and thus the future system decisions.

4.2 Latent Factor Recommendation
Consider how people make recommendations when a friend

asks them to suggest a restaurant. They strategically ask
each question with the goal of eliminating or confirming
strong candidates for dining out. Similarly, when design-
ing a conversational recommender that asks questions about
explicit items, a principled way of selecting items is desired.

The implicit structure of the item space that allows us to
learn quickly is motivated by collaborative filtering. Items
that have been co-rated similarly (liked/disliked) by users
will lie close in a low dimensional embedding. For our model
we use a simplified version of the Matchbox Recommender
model [29] – equivalent to Probabilistic Matrix Factorization
(PMF) [21]. This is a generative model, in that it specifies a
probabilistic procedure by which the observed likes/dislikes
of users on items are generated on the basis of latent vari-
ables. The model variables are learned so that the model
can explain the observed training data.

Formally, throughout the paper we use the convention
that i denotes the index overM users, forming the set I, and
j denotes the index over N items, forming the set J . Every
user i 2 I is modeled by a user bias variable ↵

i

2 R, ac-
counting for users who tend to like/dislike most of the items,
and a d-dimensional trait vector u

i

2 Rd. The trait vector
represents the latent embedding of user i in a d-dimensional

3A study of the right stopping criterion is left for the future.



space, where d ⌧ M,N . Every item j 2 J is modeled with
latent variables �

j

2 R (the item bias that accounts for item
popularity) and a trait vector v

j

2 Rd that represents the
latent embedding of item j in the same d-dimensional space.

Given that both users and items trait vectors lie in the
same latent space, the similarity between a user i and an
item j can be measured with the inner product of their cor-
responding trait vectors uT

i

v
j

. We now present two models
for estimating the latent variables, depending on the type of
observations we obtain from users, i.e., absolute or pairwise.

Absolute Model. First, let us assume that we have ob-
served tuples of the form (user i, item j, 1/0).4 The model
estimates the a�nity of user i to item j based on the biases
and traits. The generative procedure is:

1. User i has traits u
i

⇠ N (0,�2

1

I), bias ↵
i

⇠ N (0,�2

2

).
2. Item j has traits v

j

⇠ N (0,�2

1

I), bias �
j

⇠ N (0,�2

2

).
3. (a) The (unobserved) a�nity is

y
ij

= ↵
i

+ �
j

+ uT

i

v
j

. (1)

Observations are modeled as the noisy estimate ŷ
ij

⇠
N (y

ij

, ✏
ij

), where ✏
ij

models the a�nity variance, ac-
counting for noise in user preferences. This yields an
observation of whether the user likes an item (r̂

ij

):

r̂
ij

= 1[ŷ
ij

> 0]. (2)

The hyper-parameters �
1

,�
2

model the variance in traits
and biases. The model variables are learned by maximizing
the log-posterior over the item and user variables with fixed
hyper-parameters, given the training observations.

Pairwise Model. People are often better at giving relative
preferences over items instead of absolute judgments. Such
preferences yield tuples of the form (user i, item j, item
h) when user i prefers item j over item h (both j and h
are indices over J .) We can adapt the generative model to
such ground truth data by modifying the third step of the
Absolute model to yield a pairwise model:

3. (b) For each observation (i, j, h) compute

noisy di↵erence: ŷ
ijh

= ŷ
ij

� ŷ
ih

(3)

where the noisy item a�nities are defined as before.
Using ŷ

ijh

, we estimate if user i prefers j over h:

j �
i

h : r̂
ijh

= 1[ŷ
ijh

> 0] (4)

4.3 Continuous Learning Recommender
To generate recommendations, most latent factor based

recommender systems use an o✏ine trained model based
on past interactions, such as the one described above, that
they periodically update to incorporate new data. The pa-
rameters for new users are typically initialized based on a
combination of explicit attributes and past ratings (e.g [1]).
The items with the highest predicted noisy a�nity mean
comprise the recommendations presented to the user.

In contrast, recent work has moved towards continuously
learning recommenders [4, 16, 33]. This optimizes for on-
line performance using explore-exploit (EE) strategies. We
present our fully online updated recommendation approach
with the embedded preference elicitation in Algorithm 1.
Following we detail the components of this algorithm for the
case of asking absolute questions (Abs). In Section 4.4 we
show how we extend this framework for relative questions.
4We use the convention that 0 denotes dislike and 1 like.

Algorithm 1 Preference Elicitation Algorithm

Input: 8i 2 I : u

i

,↵
i

, 8j 2 J : v

j

,�
j

(o✏ine embedding)

1: A new user i arrives. Initialize prior based on Eq. 5.

2: 8j 2 J , infer noisy a�nity y
ij

(Eq. 1)

3: while fewer than allowed questions have been asked do:

4: Pick item(s) for absolute (relative) question (Sec. 4.3/ 4.4).

5: Incorporate feedback according to (i) Abs (Sec. 4.3), (ii)

Abs Pos, (iii) Abs Pos & Neg, or (iv) Pairwise. (Sec. 4.4)

6: Update u

i

, ↵
i

, v, � (Section 4.3.3) and infer the noisy

a�nity distribution y

i

(Eq. 1) or noisy di↵erence (Eq. 3).

7: end while

4.3.1 Initialization from Offline Data
We propose to initialize online learning models using an

initial embedding, that is learned o✏ine. We hypothesize
that such an initial embedding will allow the system to learn
new user’s preferences more quickly. E↵ective learning from
few questions is crucial for conversational recommenders.

We start by learning the o✏ine embedding of items from
logged observations. Then, we initialize the prior of every
item j 2 J by setting the trait v

j

and bias �
j

from the
corresponding o✏ine posterior – assuming that all items in
the online phase appeared in the o✏ine data.

For the initialization of the user parameters, we focus on
the case when the user is new to the system. Without ad-
ditional information, we can assume that the new user is
similar to the average o✏ine user. We implement this by
using as trait and bias the mean value over all o✏ine users:

ucold ⇠ E
i=1,...,M

[u
i

] ↵cold ⇠ E
i=1,...,M

[↵
i

] (5)

4.3.2 Question Selection Strategies
When a new user initiates interaction with a continuous

recommender, the system asks a few questions to learn about
the user’s preferences. During this phase, it is important to
select questions that lead to learning e↵ectively (i) the user’s
preferences and (ii) the questions’ quality, so that the num-
ber of questions asked can be minimized and interactions
remain enjoyable. This task can be modeled as an item
selection task. Here, we propose approaches that capture
characteristics of active learning and bandit learning. Ac-
tive learning approaches capture the intuition that learning
is fastest when the system queries for labels that provide a
high amount of new information [26]. Bandit learning ap-
proaches balance the need to learn new information with a
focus on what has already been learned [3, 5]. In the context
of conversational recommenders, such a balance may help fo-
cus questions on the most relevant part of the latent space,
while still considering that highly preferred items may lie in
as of yet unexplored areas of the space.

The model’s confidence in its belief over the user’s pref-
erences on items j 2 J at a given time is captured by the
current variances of the posterior of the noisy a�nities ycold

j

.
As we ask about an item j⇤ and observe the user’s feedback,
the variance of the inferred noisy a�nity of this item and of
the nearby items in the learned embedding is reduced. Also,
the means of these items’ inferred noisy a�nities change. It
is this property that allows us to search the space of items
quickly. Hence, while in the classic multi-armed bandit sce-
nario the bandit algorithms converge only after all arms are
su�ciently explored, in our setting the collaborative struc-
ture allows for faster convergence.5

5A formal regret analysis lies beyond the scope of this work.



Table 3: Question selection strategies evaluated.

Greedy: j⇤ = argmax
j

y
ij

A trivial exploit-only strategy: Select the item with high-
est estimated a�nity mean.

Random: j⇤ = random(1,N)
A trivial explore-only strategy.

Maximum Variance (MV): j⇤ = argmax
j

✏
ij

A explore-only strategy, variance reduction strategy: Se-
lect the item with the highest noisy a�nity variance.

Maximum Item Trait (MaxT): j⇤ = argmax
j

kv
j

k
2

Select the item whose trait vector v
j

contains the most
information, namely has highest L2 norm kv

j

k
2

=q
v2
j1

+ v2
j2

+ . . .+ v2
jd

.

Minimum Item Trait (MinT): j⇤ = argmin
j

kv
j

k
2

Select the item with trait vector with least information.
Upper Confidence (UCB): j⇤ = argmax

j

y
ij

+ ✏
ij

Based on UCB1 [3]: Pick the item with the highest upper
confidence bound, namely mean plus variance (95% CI)

Thompson Sampling (TS) [5]: j⇤ = argmax
j

ŷ
ij

For each item, sample the noisy a�nity from the poste-
rior. Select item with the maximum sampled value.

We compare a number of approaches for question selection
that reflect the considerations discussed above, and several
baselines. All approaches are listed in Table 3. Each selects
an item j⇤ to obtain user feedback on. While the first few are
self-explanatory baselines, we discuss three in more detail.
(1) MaxT approximates maximizing information gain, in the
vein of active learning: As user-item ratings are observed,
the PMF model adds information to the corresponding user
and item trait vectors. In the opposite extreme case, if all
item trait elements are close to 0, the corresponding item
carries no information. As MinT does the opposite from
MaxT, it is hypothesized to have low performance and is
employed to establish a lower bound on question selection
performance. (2) UCB [3] is a popular bandit algorithm
that selects the items with the highest confidence bound to
avoid missing preferences for promising items. (3) Thomp-
son Sampling (TS) is a bandit algorithm that balances explo-
ration and exploitation by selecting items using a sampling
strategy [5]. It samples from its current posterior belief over
noisy a�nities, and then acts optimally according to this
sampled belief. TS focuses on items with high mean a�nity,
but is also likely to select items with high variance.

4.3.3 Online Updating
After posing a question to the user, the observed response

needs to be incorporated into to the recommender to allow
for continued learning. As shown in [23], the questions can
be incorporated into the model by setting the probability
of the question to 1 and incorporating the user’s response
following standard probability theory.

The user’s response thus becomes a new observation that
the system uses to update the posterior distributions of all
latent model parameters related to the incoming user i and
the item j asked about, i.e., ↵

i

,�
j

,u
i

,v
j

(but a↵ecting only
user i’s interaction session). Due to space constraints, we
refer the reader to [29] for the specific Expectation Propa-
gation updates. To select the next question for user i, we use
the updated posteriors as the new priors to infer the user’s
noisy a�nity distribution ŷ

ij

for all items j 2 J , denoted by

ŷ
i

. As the system keeps asking questions to user i and in-
corporates his/her feedback, the beliefs about the user, and
the item in the question, change. This allows the model to
move towards the true underlying a�nity distribution. All
online updates were implemented in Infer.NET [20].

Abs: Absolute Model, Absolute Questions
So far we have presented the entire framework for the case
where the system poses absolute questions. Before turning
to relative feedback, we describe the high-level approach for
asking absolute questions (Abs). Using TS for illustration
purposes, Abs asks user i about the item with the largest
sampled noisy a�nity as inferred by the Absolute model:

j⇤ = argmax
j2J

ŷ
ij

(6)

Based on whether the user (dis)liked item j⇤, a new obser-
vation (i, j⇤,1/0) is incorporated into the Absolute model.

4.4 Extension to Relative Preferences
An alternative is for the system to ask for a preference

about a pair of items, i.e., does the user prefer item A (j⇤)
or item B (h⇤)? Therefore, we present here the extension of
our framework to the case of asking relative questions.

We consider three separate formulations (referred to as
Abs Pos, Abs Pos & Neg and Pairwise) for selecting rela-
tive questions and incorporating feedback, to identify the
best way of asking relative questions. Importantly, in every
such formulation there are two choices: (i) the underlying
model (Absolute vs. Pairwise) and (ii) how the user’s re-
sponse to the question is incorporated back into the model.
For the first choice, Abs Pos and Abs Pos & Neg use the Ab-
solute model, while Pairwise uses the Pairwise model. The
second choice is applicable only for Abs Pos and Abs Pos

& Neg, as they represent two ways of incorporating relative
feedback into the absolute model.

4.4.1 Absolute Model, Relative Questions
First, we present Abs Pos and Abs Pos & Neg. Both use

the same mechanism to generate the question “A vs. B” for
user i:

1. Select item A as in Abs (Equation 6).
2. Virtual observation: Assume user i did not like A.
3. Virtual update: Incorporate the tuple (i, A, 0) into

the Absolute model, infer the posteriors for all model
parameters and set them as the virtual new prior.

4. Select item B, again according to Abs, but this time
using the virtual prior as prior.

The insight behind this mechanism of constructing the
relative question is that the two items the user is asked to
give a relative preference on should be relatively far apart
in the latent embedding, so that (i) the system can learn
users’ preferences e↵ectively and (ii) the user is not forced
to choose among very similar items. This diversity enforcing
mechanism is inspired by the approach in [6].

The two methods introduced here di↵er only in the way
the feedback is incorporated into the Absolute model. Abs

Pos incorporates only positive information while Abs Pos

& Neg incorporates both positive and negative information.
For example, assume that the user preferred item B to A.
Then, Abs Pos incorporates only the observation (i, B, 1),
interpreting the relative preference on the preferred item B
as a like for B. In contrast, Abs Pos & Neg incorporates two



observations: (i, B, 1) for the preferred item and (i, A, 0) for
the less preferred item. This can be seen as a variant of the
“sparring” approach to dueling bandits [2], which samples
item pairs and updates the model for both items as if an
absolute reward were observed.

4.4.2 Pairwise Model, Relative Questions
The third method for selecting relative questions, Pair-

wise, uses the Pairwise model that directly takes pairwise
preferences as input, to generate the relative question and
incorporate the observations. Thus, the user’s relative feed-
back is incorporated into the model without any intermedi-
ate transformation, i.e., as an observation (i, B, A) when B
is preferred over A.

The Pairwise method picks A exactly as in Abs, and for
item B, inspired by the dueling bandit approach in [34], it
picks the item with the largest probability of being preferred
to item A. We instantiate the latter by selecting the item
with the maximum noisy di↵erence from item A (j⇤):

item B = h⇤ = argmax
h2J

ŷ
ihj

⇤ (7)

For the selection of item B, any question selection strategy
besides TS illustrated here (except for MinT, MaxT), can
be employed exactly as in Table 3, with the di↵erence that
the noisy di↵erence distribution should be used.

Incorporating the ‘Neither’ Option.
Preliminary experiments showed that when the method asks
the user to give a relative preference on two items that he
dislikes, forcing him/her to choose one could mislead the
model about the user’s preferences. Thus, we adjusted all
methods so that in such a case the user can specify that he
likes neither. We implemented this by (i) incorporating two
dislikes in Abs Pos & Neg and (ii) omitting the update in
Abs Pos and Pairwise.

5. EXPERIMENTAL SETUP
We now describe our overall empirical setup, used for the

experiments described in the next two sections.
Setting. One main di�culty of evaluating conversational
recommenders is that it requires the ability to have access
to user reactions to any possible system action. We address
this requirement using generative user models. The first user
model is constructed synthetically and is used to validate our
model (Section 6). The second is instantiated from real user
preferences, collected via a user study (Section 7).
All experiments consist of an o✏ine and an online phase.

During the o✏ine phase, the model is presented with data
where M users interact with N items. In the subsequent
online phase, the model is used to interact with cold-start
users, asking questions using the pool of the o✏ine N items.
We varied the number of questions from 0 to 15 and re-

port the model’s performance after each question. In prac-
tice, recommendations could be given after fewer questions,
could be integrated with initial recommendations, or could
be spread out over several interactions with a given user.

Research Questions. Our experiments are designed to
address the following research questions:
RQ 1. Can our model adapt to the user’s preferences?
RQ 2. Does our model learn e↵ectively under either abso-

lute or relative feedback?
RQ 3. Which relative question method performs better?

RQ 4. Is absolute or relative feedback more e↵ective?
RQ 5. Does the o✏ine initialization step help?
RQ 6. Which question selection strategy is more e↵ective?

To answer each one of these questions, we need some mea-
sure of evaluating the e↵ectiveness of our framework. Given
that the goal of preference elicitation is a good recommenda-
tion list adhering to the user’s preferences, we use Average
Precision@k (AP@k) as our evaluation metric.

Metric. AP@k is a widely used, precision-oriented metric
[15] for capturing accuracy in the top k (we set k = 10).
Formally, for user i, we obtain the user’s predicted recom-
mendation list by sorting all items by decreasing mean of
inferred noisy a�nities y

i

. We evaluate this list by looking
at the ground truth rtrue

i

, i.e., capturing whether the user
liked/disliked each item. AP@k is defined as the average of
precisions computed at each liked position in the top k items
of the user’s ranked list. P@` (Precision@`) is the fraction
of liked items out of the top `+ 1 ranked items. Thus,

AP@k =
k�1X

`=0

P@` · rtrue
i[`]

min(k,# of liked items)
(8)

where [`] represents the index of the item present in rank
`, with [`] = 0 corresponding to the index of the top rec-
ommended item. Higher value (closer to 1) of AP@k im-
plies better recommendation list. In our results, we report
the average and 95% confidence intervals of AP@10 over all
cold-start users. Results in additional metrics, such as ra-
tio of correctly ranked pairs and mean reciprocal rank, were
omitted as they showed similar trends as AP@10.

6. LEARNING SYNTHETIC USER TYPE
PREFERENCES

We begin our experiments with an intentionally simplis-
tic example of restaurant recommendation, as real world
high-dimensional data is di�cult to visualize. The exam-
ple is meant to demonstrate concepts of our model and to
illustrate the e↵ectiveness of our approach to unlearn ini-
tial prior beliefs and tailor recommendations to specific user
types, answering RQ1 a�rmatively.

In our framework, we first use observations to learn an of-
fline embedding for users and items in the same low-d space.
Here, we generated the o✏ine observations by considering
types of users and restaurants as follows:

Restaurant types %

expensive 15%

cheap & spicy 5%

cheap & not-spicy 10%

only cheap 35%

only not-spicy 15%

only spicy 20%

User types %

Like expensive 20%

Like spicy 15%

Like not-spicy 25%

Like cheap 30%

Like only not-spicy 5%

Like only spicy 5%

We generated N = 200 restaurants, and M = 200 users.
For each o✏ine user, according to their type, we sampled 10
items from their liked category as likes and 10 items from the
rest of the categories as dislikes. We used this intentionally
simple synthetic setup to evaluate various parameter choices,
and we show results for �2

1

= 10, �2

2

= 0.5, ✏ = 0.1. To allow
visualization, we considered only two latent traits (d=2) for
this example. We see that in the learned embedding, the
first trait indicates spiciness, while the second the price.

In the same space, an embedding for users is also learned
(not shown to avoid clutter). The average trait vector over



all users is shown with a red cross. This becomes the initial
trait vector for the cold-start user. Considering also the
learned items’ biases and the average user bias (not shown
here), the system constructs an initial estimate of the noisy
a�nity distribution of the incoming user about all items.

Based on the o✏ine observations, the learned prior for this
a�nity distribution favors user types which were popular in
the o✏ine data. The task of selecting restaurants for online
users resembling the mean o✏ine user is easy, as the prior
already captures valuable information. As Fig. 1, bottom
right panel shows, even with no questions, a close to perfect
recommendation list can be given for Liking not-spicy users.
Similar is the trend for the Liking cheap users (not shown).

Figure 1: Results on synthetic restaurant data, across user
types (left), and two of the user types (right).

In contrast, when the user is of a type that was rarely seen
during the o✏ine phase (e.g., expensive, shown in Fig. 1, top
right panel), the online recommender has to collect observa-
tions that move away from more popular types. The trends
for Liking spicy, Liking only-spicy, and only not-spicy user
types are similar to the Liking expensive. For these types,
the model (all four approaches) starts with AP@10 close to
0, but after every question asked, unlearns the initial wrong
prior beliefs, and learns the specific user types’ preferences.

For the results reported, we considered 60 cold-start users
of each type and used TS for the question selection.

All methods learn e↵ectively across all user types, with
minor di↵erences (Fig. 1, left) answering RQ 2 positively.

7. RESULTS ON REAL DATA
Having positively answered RQ 1 and RQ 2 above, we

turn our attention to a real-world setting to address all re-
search questions in the context of ‘where to dine in Cam-
bridge, UK’. For the o✏ine initialization of our framework,
we use real users’ online search behavior in a commercial
search engine (Section 7.1). We use the insights from Section
3 to design a user study that is used to collect real restau-
rant preferences for Cambridge (Section 7.2). The collected
responses serve as a basis for evaluating our online recom-
mendation methods. We sketch a novel two-step approach

to infer ratings for all restaurants, apart from those asked in
the study (Section 7.3). We extensively evaluate our choices
for the recommendation pipeline (Section 7.4).

7.1 Search Data for Offline Initialization
We start by describing the data which serve as our o✏ine

user-restaurants observations, based on which we learn the
embedding used to warm start the question-asking phase.

This data is obtained by identifying restaurant review
pages for restaurants in Cambridge (UK) on a major restau-
rant review service provider. Next, we filter the query and
click logs from a major commercial search engine to find
(anonymous) cookies that mark a single PC accessing a se-
quence of these restaurant pages. Each cookie is taken to be
a distinct user, and all visits on restaurant review pages are
considered to be indicating the user liking the restaurant6.

In particular, taking logs from 26 March to 26 April 2015,
we identified 3,549 cookies (users) who accessed at least
one of the 512 distinct Cambridge restaurant review pages
identified on the review service provider. This resulted in
an index of Cambridge restaurants, each one visited by at
least one user. Augmenting each of the restaurants with all
known links and metadata associated with it in a proprietary
restaurant index, and selecting a further three months back
in each of those users’ search histories, we recorded every
interaction of these users with these restaurant links. Dur-
ing the four month search history of the users, we recorded
interactions with 289 unique restaurants out of the 512 Cam-
bridge restaurants. The total number of unique user – restau-
rant interactions recorded is 9330.

Thus, our o✏ine data consists of M = 3549 users, N =
289 restaurants, and 9330 positive observations (1). To in-
troduce dislikes (0) to the rating matrix as well, for every
user i who has liked n+

i

items, we sampled uniformly at
random n�

i

= min(10, n+

i

) restaurants as dislikes.
Parameter Setting. To learn the o✏ine embedding, we set
the hyper-parameters to the combination that achieved the
highest pairwise accuracy in the o✏ine observations: d = 4
(i.e., 4 latent traits), �2

1

= �2

2

= 10, ✏ = 0.1.

7.2 User Study as Basis for Online Evaluation
One of the issues of evaluating a conversational recom-

mender is that one needs to know the user’s ground truth
on the space of all items (and questions). To obtain this,
one needs to implement an interactive recommender asking
questions to real users and receiving their responses. As an
intermediate step, we conducted a user study and used the
collected responses as ground truth for online users.

In the user study conducted, each participant filled in an
anonymous web questionnaire about their preferences on a
pool of restaurants in Cambridge, UK. The participants were
asked“would you consider restaurant X for your next Friday
night dinner?”, labeling each restaurant with a binary label
(yes/no). These responses comprise our ground truth.

For the pool of Cambridge restaurants we carefully se-
lected ten restaurants, diverse in various features (as iden-
tified in Section 3). We recruited twenty eight individuals
for the study. Given the anonymity of the questionnaire
(in order to encourage truthfulness in the responses), demo-
graphic information was not recorded. However, the larger

6Though URL visitation is a weak positive signal, the ex-
periments indicate it is a reasonable proxy for interest.



Figure 2: Di↵erences between relative feedback models
(left); and comparing absolute and relative feedback (right).

pool of individuals from which the participants were drawn
(65 people working in a research lab) varied in factors such
as age, job level, income, time spent in Cambridge.

Each participant was presented with the questionnaire
about the same restaurants, but with varying order to avoid
presentation bias. The participants were advised to visit the
restaurant webpage when unfamiliar with the restaurant.

7.3 Obtaining Ground Truth
In our user study, we obtained restaurant labels for 10 out

of the 289 Cambridge restaurants present in the o✏ine data,
for 28 participants. However, for reliable evaluation we need
labels for the entire item space (rather than limiting our
methods to ask about just these 10 restaurants). Therefore,
we introduce an approach to fill in complete ground truth
labels. Also, to increase the diversity of the user space,
inspired by [17], we used bootstrapping to obtain 50 cold-
start users based on the 28 participants’ ground truth.

In particular, for each cold-start user:
1. Randomly sample one of the 28 participants.
2. Observe the sampled user’s labels on the pool of 10 restau-
rants asked in the user study.
3. Infer user’s traits u

i

(prior= learned embedding in 7.1).
4. Sample û

i

⇠ u
i

. Set this to be the new prior of u
i

.
5. With this prior, infer the ratings r

i

distribution.
6. Sample ratings from their distribution r̂

i

⇠r
i

.
In this way, for each bootstrapped user we obtain a com-

plete rating list for all 289 restaurants that is consistent with
the user study labels of some user, yet is perturbed to ac-
count for variety in real user populations.

As far as we are aware, this approach for filling in the
missing ratings is novel. It gives us ground truth as close to
real as possible given the resources available. Alternatives
would be exhaustive labels (not feasible for our study), or re-
jection/importance sampling (only e↵ective when leveraging
logged exploration data from large-scale systems, e.g [16]).

7.4 Results
Having obtained the o✏ine embedding and the online users’

ground truth for all items, we now present our experiments
on a real restaurant recommendation scenario with the focus
of answering the remaining research questions RQ 3 - RQ 6.
Each of these questions investigates a separate component
of our continuously learning recommender system.

Which method for relative questions is better? (RQ 3)
Recall that we proposed three approaches for modeling rel-
ative feedback. The first two incorporate feedback in an ab-
solute model, (a) by incorporating information that the user
liked the preferred item (ignoring the non-preferred one, Abs

Pos), and (b) by incorporating both positive (preferred) and
negative (non-preferred) information (Abs Pos & Neg). Al-
ternatively, we construct a pairwise model (Pairwise). The
results of the three methods’ comparison are shown in the
left panel of Figure 2. These results were obtained using TS
for question selection and start from the o✏ine embedding.

We see no significant di↵erence among the methods during
the first few questions. After only 2 questions, all methods
significantly improve over the initial performance of .584 to
respectively .734 (Abs Pos), .780 (Abs Pos & Neg), and .684
(Pairwise). However, as we ask more questions, Abs Pos &

Neg forces negative observations on liked restaurants, thus
causing the method to degrade the ranking. Overall, Abs
Pos is the most e↵ective method for relative questions.7

Are absolute or relative questions better? (RQ 4)
To answer this question, we compare the performance of
the absolute-question asking method (Abs) with the best
relative-question asking method (Abs Pos). The results are
shown in the right panel of Figure 2. Until 2 questions,
both methods have almost identical performance. But, af-
ter 5 questions, Abs performs significantly better than the
relative feedback method, and achieves close to perfect per-
formance after 15 questions (AP@10 = .975). We hypoth-
esize that this result can be explained by the fact that our
o✏ine embedding favored absolute feedback.

Although our result shows that very high accuracy can be
achieved when users provide accurate feedback on absolute
questions, in practice this may not always be possible. Psy-
chological e↵ects such as anchor bias [12] can lead users to
implicitly compare items, lowering the quality of absolute
feedback. When this is the case, our result shows that high
performance can be achieved with relative feedback as well.

Future work could involve hybrid models that automati-
cally learn whether absolute or relative feedback, or a com-
bination, is more accurate in a given setting.

Does offline initialization help? (RQ 5)
Next, we investigate the impact of model initialization, i.e.,
initializing the online recommender with an initial o✏ine
embedding, compared to starting from a generic prior (us-
ing the optimized hyper-parameters specified in 7.1). We
present the results of this comparison in Figure 3 both for
the absolute (Abs) and the best relative feedback model (Abs
Pos), in the left and right panel correspondingly.

Our hypothesis is that the o✏ine embedding learned from
the weakly labeled data of a search log captures su�cient
information to helpfully constrain continued learning, even
if it does not exactly match the structure that underlies
online users. Indeed, Figure 3 demonstrates great perfor-
mance improvements when initializing the models from this
embedding over generic prior initialization. By placing the
new users as the average o✏ine user, performance increases
from .217 to .584, even without asking any questions. As
the recommender collects more responses, performance con-
tinues to improve in both cases.

One observation is that the uninitialized system can ulti-
mately achieve high performance, and for Abs Pos (Prior)

even pass the o✏ine initialized system. However, this is only
achieved after many questions (here: 14). The phenomenon

7Studying the e↵ect of alternatives for introducing dislikes in
the o✏ine data on Abs Pos’s success is left for future work.



Figure 3: Impact of o✏ine initialization on performance for
absolute (Abs, left) and relative feedback (Abs Pos, right).

is nevertheless interesting, as it may point to a bias-variance
trade-o↵. Starting from the generic prior allows the system
to eventually perfectly fit a given user’s preferences, how-
ever, learning takes a long time because there is no initial
structure to constrain learning outcomes. We conclude that
using o✏ine initialization is highly beneficial.

Which question selection strategy is best? (RQ 6)
In Figure 4 we report the comparison results of the various
question selection strategies of Section 4.3.2 (except MaxV

whose performance almost coincides with UCB), for the Abs

and Abs Pos methods initialized with the o✏ine embedding.
For the Abs model (Figure 4, top), we observe that: (i)

as expected, lowest AP@10 is achieved by MinT, (ii) Ran-

dom learns slowly, likely because it fails to focus on more
promising items for e↵ective learning, and (iii) all remaining
strategies perform equally well. We hypothesize that Greedy
performs well thanks to the o✏ine embedding, along with
the online updating of all parameters after each response.

Turning to Abs Pos (Figure 4, bottom), the best perform-
ing strategies are those that encourage more diversity across
the questions of the interactive session, namely the bandit-
based ones and Random. Greedy and MaxT are the worst
performing ones, following MinT. Our insight why this is the
case is that they tend to select questions A vs B, followed
by A vs C, etc. when A is preferred. Given that there is
no construction encouraging B and C to be diverse (such as
sampling or taking into account uncertainties), the questions
focus on comparing parts of the embedding which are similar
across questions, thus preventing truly e↵ective learning.

Overall, we find that the bandit-inspired strategies per-
form the most robustly, achieving top performance across
models. In the classic bandit setting, these approaches sys-
tematically balance the need to explore new solutions with
the need to reap the rewards of what has already been
learned. Here, we find that similar principles allow these
strategies to collect user feedback that balances the need to
not discard any areas of the latent space prematurely with
the need to focus questions on the most promising areas.
This novel insight is important because it shows that bandit-
based question selection strategies can lead to benefits that
go beyond the typical bandit problem.

Discussion. All our results show that our methods enable
e↵ective learning from interactions with their users, under
either feedback type, answering positively RQ 1 and RQ 2.

We show substantial recommendation performance im-
provements over the performance we would get without adapt-
ing to the user; by 25% after only 2 questions.

Although our underlying model can be augmented with
external features [29], one key advantage is it does not need

Figure 4: Performance of question selection strategies for
absolute (Abs, top) and relative (Abs Pos, bottom ) models.

them. It learns online both the user’s and the items’ latent
traits. Together with [18] and [33], our findings corroborate
the e↵ectiveness of latent-feature interactive recommenders.

A novel insight is that taking into account the uncertain-
ties in the learning of both the item and the user embedding,
we can adapt to the specific user’s preferences, under a cer-
tain context. This answers to the question posed by [33] and
is key for allowing the system to learn both the user’s profile
and the questions’ e↵ectiveness in a contextual manner.

We have demonstrated e↵ective learning from feedback
present in many interactive settings. Thus, our approach is
a good candidate for online learning across domains.

8. CONCLUSIONS
In this paper we proposed a novel view of recommendation

as an interactive process. Like human recommenders, we
envision recommender systems that can converse with new
users to learn to know their preferences.

We develop such a conversational recommender, using
restaurant recommendation as our motivating example. We
start by examining restaurant related queries issued in a
commercial search engine. Using these insights, we con-
ducted a user study to elicit ground truth for evaluating our
system. We propose a conversational recommender model
that is theoretically well anchored in probabilistic matrix
factorization models [21, 29]. We show how such models
can be extended to support continuous learning. We empir-
ically evaluate our approach using the ground truth based
on real dining preferences elicited through our user study.

Our results have important implications for the devel-
opment of conversational recommender systems. First, we
demonstrated that best performance can be achieved with



absolute questions. However, even in settings where only
relative feedback is available, e↵ective learning is possible.
Second, we proposed a systematic approach to initializing
conversational recommenders with an o✏ine learned em-
bedding, boosting greatly the performance even when only
weakly supervised data is available. Third, we identified
question selection strategies that can elicit feedback for very
e↵ective learning. Together, these insights pave the way to-
wards conversational recommenders.

A promising future direction is to extend conversational
recommenders to use reinforcement learning approaches, for
capturing longer-term dependencies [17]. The modular struc-
ture of our framework allows various choices in a plug-and-
play-manner, considering di↵erent feedback types, underly-
ing probabilistic models etc., with the goal of building a suite
of conversational recommenders for a variety of settings.
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