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ABSTRACT

Controlled experiments are widely regarded as the most sci-
entific way to establish a true causal relationship between
product changes and their impact on business metrics. Many
technology companies rely on such experiments as their main
data-driven decision-making tool. The sensitivity of a con-
trolled experiment refers to its ability to detect differences in
business metrics due to product changes. At Netflix, with
tens of millions of users, increasing the sensitivity of con-
trolled experiments is critical as failure to detect a small
effect, either positive or negative, can have a substantial rev-
enue impact. This paper focuses on methods to increase sen-
sitivity by reducing the sampling variance of business met-
rics. We define Netflix business metrics and share context
around the critical need for improved sensitivity. We re-
view popular variance reduction techniques that are broadly
applicable to any type of controlled experiment and met-
ric. We describe an innovative implementation of strat-
ified sampling at Netflix where users are assigned to ex-
periments in real time and discuss some surprising chal-
lenges with the implementation. We conduct case studies
to compare these variance reduction techniques on a few
Netflix datasets. Based on the empirical results, we recom-
mend to use post-assignment variance reduction techniques
such as post stratification [7] and CUPED [3] instead of at-
assignment variance reduction techniques such as stratified
sampling [2] in large-scale controlled experiments.
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1. BACKGROUND AND MOTIVATION
Controlled experiments are key for data-driven decisions

in many technology companies. Running controlled experi-
ments that are not sensitive enough to differences in business
metrics caused by product changes can lead to suboptimal
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decisions with large revenue impact for companies like Net-
flix.
There are three ways to improve the sensitivity of controlled
experiments: increasing sample sizes in the experiments, de-
signing product changes that lead to large differences in busi-
ness metrics, and reducing the sampling variance of business
metrics.
The simplest way to increase sensitivity is to increase sam-
ple sizes. While the Netflix user base is very large, this
option is not always practical. Many experimental product
features affect only a small proportion of the user base, e.g.,
testing a new kids search experience on Android tablets has
a relatively small audience, which limits the sample sizes.
Moreover, while Netflix runs over a thousand experiments
per year, there is always a desire to increase the pace of
innovation by scaling up the number of experiments. With
some experiments colliding with one another, available users
for each experiment can become scarce. For these reasons,
increasing the number of users assigned to experiments is
often not feasible.
Two other avenues to improve the sensitivity of controlled
experiments are explored in parallel at Netflix. Product
managers lead cross-team efforts to focus on bold product
changes that can lead to large positive differences in business
metrics, while the experimentation team constantly seeks
new experimentation methodologies to reduce the sampling
variance of our business metrics.
This paper compares a few variance reduction techniques
both theoretically and empirically based on a few Netflix
datasets and provides guidance to experimenters on the choice
of variance reduction techniques. Our primary contribu-
tions are threefold. First, we review the theory of three
variance reduction techniques: stratified sampling [2], post
stratification [7], and CUPED [3] and establish theoretical
connections between them. Second, we describe an inno-
vative implementation of stratified sampling at Netflix that
addresses the challenges posed by assigning users to experi-
ments in real time. Third, we conduct an empirical evalua-
tion of these variance reduction techniques on a few Netflix
datasets and compare their amount of variance reduction
relative to simple random sampling.

2. CONTROLLED EXPERIMENTS AT

NETFLIX
Netflix has a data-driven decision-making culture. We

have learned through years of experimentation that using
subjective intuition, even in a collective way, to make prod-
uct decisions often yields the wrong answer. One way to



make product decisions is to hear what users have to say.
But what users ask for and what actually works are very dif-
ferent. Running controlled experiments and making product
decisions based on business metrics is the best way to bridge
this gap. Business metrics should be chosen such that im-
proving them is highly related to increasing the value users
get from the Netflix service. See [6] for some examples where
actual experiment results do not agree with subjective intu-
ition in the movie/TV recommendation algorithm area and
a more complete description of how controlled experiments
are used to improve our movie/TV recommendation algo-
rithms.
At Netflix, controlled experiments are leveraged in many
different product areas such as movie/TV recommendation
algorithms, user interface design, and messaging. Different
product experiences in experiments are referred to as cells.
In each experiment, we are typically interested in comparing
various new experience(s), referred to as test cell(s), with the
current production experience, referred to as the control cell.
For example, in a controlled experiment in the movie/TV
recommendation algorithm area, the control cell maps to
the current production algorithm and the test cell(s) map
to new algorithm(s) we want to compare with the produc-
tion one.

2.1 Test Audience
At Netflix, controlled experiments are run on both new

and existing users [6]. New users are assigned to experi-
mental conditions at the time of signup, while existing users
can be assigned anytime after their free trial ends. While
product decisions rely on results from both cohorts, they are
more heavily based on results from new users since they have
not been exposed to the Netflix experience before. For exist-
ing users, it is difficult to tease apart whether a movement
in business metrics is simply due to a change in experience
(change effect) [6] or whether it is caused by the new ex-
perience itself. One way to remove such change effect is to
run experiments longer and observe if the difference in busi-
ness metrics persists after a long time. But this slows down
our pace of innovation. The other reason to favor results
from new users is because they are more sensitive to prod-
uct changes since they start with a free trial during which
they are in an evaluation mode. Note that testing on new
users is not a common practice in the industry but is very
important for Netflix to make product decisions for the rea-
sons just explained.

2.2 Business Metrics
Netflix’s monthly subscription business model suggests a

framework to define business metrics for controlled exper-
iments. Our revenue comes solely from the monthly sub-
scription fee that current users pay, and current users can
cancel the subscription at anytime. Thus we believe max-
imizing revenue through product changes is closely related
with maximizing the value we provide to our users. Rev-
enue is proportional to the number of users that is affected
by three processes: the acquisition rate of new users, cur-
rent user cancellation rate, and the rate at which former
users rejoin. The focus of this paper is on product changes
that directly impact only current users. Hence the primary
business metric of interest is current user cancellation rate
or retention rate. However, there are some challenges with
just looking at retention rate in product experiments.

First of all, as much as we hope that better product or user
experience can increase user retention rate, it can be af-
fected by many other factors that are not directly related
to our product changes. Secondly, since our subscription
is month by month, users typically choose to cancel their
subscription by their next payment period. For new users,
it typically takes a whole month to observe retention since
they are assigned to the experiments at the beginning of
their first payment period. For existing users, the wait time
to observe retention varies depending on the number of days
it takes from the start of the experiments to the users’ next
payment period.
Fortunately, we have observed that user engagement met-
rics are highly correlated with retention but are more sen-
sitive. Moreover, we get to observe such engagement met-
rics from the start of an experiment. One good example of
user engagement metrics is streaming hours. However, the
relationship between streaming hours and retention is not
linear. What we have learnt from historical data is that get-
ting users that stream few hours per month to stream more
has a much larger positive impact on retention than getting
users that already stream a lot to stream a bit more. This
is because those users with low streaming hours are more
likely to be one of those on the fence of cancellation and are
more sensitive to product changes.
So we summarize the distribution of streaming hours using
I streaming thresholds Ti, i = 1, ..., I . For a given user,
Ti is a binary metric indicating whether the user streamed
more than Hi hours in a given time period. Hi’s are cho-
sen to minimize the loss of information from summarizing
the distribution of streaming hours using these thresholds.
Details are not covered in this paper. From a business per-
spective, these streaming thresholds allow decision makers
to gain more insight on which part of the distribution of
streaming hours is changed. While we have tried more so-
phisticated versions of streaming measurement in the past,
these thresholds work well because they are easy to under-
stand without much loss of information.

3. REVIEW ON VARIANCE REDUCTION

TECHNIQUES

3.1 Terminology and Notation
We define all the users that can potentially be impacted

by an experiment as the population for the experiment. Sup-
pose there is one or more variable(s) that are correlated with
the business metrics. These variables are measurable prior
to an experiment and independent of the different experi-
ences in the cells of the experiment. As an example, the
signup country of a user is correlated with how likely the
user is to retain but does not depend on the experiences
tested in the experiment. We refer to these variables as co-
variates and denote them as X. The two sampling schemes
considered in this paper are simple random sampling and
stratified sampling. In stratified sampling, covariates are
used to divide the population into K subpopulations called
strata. For example, since Netflix is available in 190 coun-
tries, we can divide the population for an experiment in 190
strata based on the signup country covariate.
Now we introduce some terminology and notations used
throughout the paper. Note that the following notations



are used for both simple random sampling and stratified
sampling.

• Random sample: a subset of users that are represen-
tative of the population

• Y : the business metric

• Ti, i = 1..., I : the binary streaming thresholds defined
in Section 2.2

• µ = E(Y ): the population mean of the business metric

• µk: the mean of the business metric for users in the
kth stratum

• σ2 = var(Y ): the population variance of the business
metric

• σ2
k: the variance of the business metric for users in the

kth stratum

• pk: proportion of the population in the kth stratum

• nk: number of users from the kth stratum in a cell

• n: number of users in a cell from all the K strata, i.e.,
n =

∑K

k=1 nk

• Y11, ...Y1n1
, ...YK1, ..., YKnK

: business metrics of a ran-
dom sample (either based on simple random sampling
or stratified sampling) of users from the population
where Ykj is the business metric of the jth user from
the kth stratum

• Effect size: difference between the population mean
under the experience in the test cell and that in the
control cell

Next we define two estimates of the population mean. The
first is the standard simple sample average denoted as Ȳ . It
is defined as

Ȳ =
1

n

K
∑

k=1

nk
∑

j=1

Ykj . (1)

The second is a weighted average denoted as Ŷstrat. It is
defined as

Ŷstrat =

K
∑

k=1

pkȲk, (2)

where pk is defined above and Ȳk = 1
nk

∑nk

j=1 Ykj is the av-

erage of the business metric for users from the kth stratum.
Note that, under stratified sampling, the two estimates in
(1) and (2) are the same. More details around why this is
true are in Section 3.3. However, these two estimates are
not the same under simple random sampling. This is the
reason why post stratification leads to variance reduction.
See Section 3.4 for the details. The subscript strat is used
in the weighted average estimate (2) because it comes from
stratified sampling. Throughout the paper, we use Esrs and
Estrat to denote the expectation of an estimate under sim-
ple random sampling and stratified sampling, respectively.
Similarly, we use varsrs and varstrat to denote the variance
of an estimate under simple random sampling and stratified
sampling, respectively.

3.2 Overview
Variance reduction is a procedure to increase the precision

of the sample estimate of some parameter such as the pop-
ulation mean. The sample estimate is typically based on a
random sample of the population. While a well-known pro-
cedure in statistics, Monte Carlo simulation [8], and some
other areas, its application in controlled experiments is rela-
tively new. Next we review a few popular variance reduction
techniques that can be easily applied to controlled experi-
ments.
As a starting point, we briefly review the statistical infer-
ence in controlled experiments. Suppose we are interested in
comparing a test cell and the control cell in an experiment.
Denote the business metric in the test cell and the control
cell as Y (t) and Y (c), respectively. We start with a pair of
hypotheses. The null hypothesis is that Y (t) and Y (c) have
the same mean and the alternative is that they do not. The
sample size in the experiments at Netflix is at least in thou-
sands. Regular two-sample t-test is thus applied to test the
hypotheses. The t-test statistic is defined as follows.

Ȳ (t) − Ȳ (c)

√

var(Ȳ (t) − Ȳ (c))
, (3)

where Ȳ (t) is an unbiased estimate for the population mean
in the test cell and Ȳ (c) is an unbiased estimate for the pop-
ulation mean in the control cell. Thus Ȳ (t) − Ȳ (c) is an
unbiased estimate for the effect size. In controlled experi-
ments, variance reduction is about reducing var(Ȳ (t)−Ȳ (c)).
The sampling in our controlled experiments is without re-
placement because a user can not be assigned to two cells
at the same time and the population is finite. Thus, strictly
speaking, the samples in control and test are not indepen-
dent from each other. But the users assigned to a single
experiment are typically a small proportion of the Netflix
user base. Hence the dependence is negligible and we have

var(Ȳ (t) − Ȳ (c)) = var(Ȳ (t)) + var(Ȳ (c)). (4)

Equation (4) shows the equivalence between reducing the
variance of the mean estimate in a single cell and reducing
the variance of the effect size estimate. Therefore we fo-
cus the discussion that follows on variance reduction in a
single cell. Fundamentally, variance reduction in a single
cell of controlled experiments can be achieved by leverag-
ing covariates that are measurable prior to the experiments
and are correlated with the business metrics. Covariates
can be used at different stages of an experiment. When
used at-assignment, the covariates are leveraged during the
process of assigning users to the cells, e.g., stratified sam-
pling. When used post-assignment, the covariates are lever-
aged after the user assignment, e.g., post stratification and
CUPED.

3.3 Stratified Sampling
Stratified sampling [2] is probably the most well-known

at-assignment variance reduction technique. The basic idea
of stratified sampling is to divide the population into strata,
sample from each stratum independently, and then combine
samples across each stratum to give an overall estimate. In
stratified sampling, the sample size from the kth stratum
nk is fixed for given total sample size n and they have the
following relationship

nk = npk, (5)



where pk is defined in 3.1 and k = 1, ..., K. In stratified
sampling, the weighted average in (2) is typically used to
estimate the population mean µ. As mentioned in Section
3.1, under stratified sampling, the two estimates in (1) and
(2) are the same shown as follows.

K
∑

k=1

pkȲk =

K
∑

k=1

pk
1

nk

nk
∑

j=1

Ykj

=
K
∑

k=1

nk

n

1

nk

nk
∑

j=1

Ykj

=
1

n

K
∑

k=1

nk
∑

j=1

Ykj .

(6)

The first equation in (6) follows from the definition of Ȳk.
The second equation is true because of (5). Now we derive
some statistical properties of the estimate in (2) under strat-
ified sampling. We first show the estimate in (2) is unbiased
under stratified sampling.

Estrat(Ŷstrat) =

K
∑

k=1

pkEstrat(Ȳk) =

K
∑

k=1

pkµk = µ. (7)

Secondly, the variance of the estimate in (2) under stratified
sampling is

varstrat(Ŷstrat) =
K
∑

k=1

p2kvarstrat(Ȳk)

=

K
∑

k=1

n2
k

n2

1

nk

σ2
k

=
1

n

K
∑

k=1

pkσ
2
k.

(8)

The first equation in (8) holds because sampling from the
K strata is done independently from each other. σ2

k and nk

are defined in Section 3.1.
In simple random sampling, the standard simple sample av-
erage in (1) is used to estimate the population mean. Under
simple random sampling, the estimate in (1) is unbiased
shown as follows.

Esrs(Ȳ ) = Esrs(
1

n

K
∑

k=1

nk
∑

j=1

Ykj)

=
1

n

K
∑

k=1

nk
∑

j=1

Esrs(Ykj)

=
1

n

K
∑

k=1

nk
∑

j=1

µ

=
1

n
nµ

= µ.

(9)

The variance of (1) under simple random sampling is derived

as follows.

varsrs(Ȳ ) = varsrs(
1

n

K
∑

k=1

nk
∑

j=1

Ykj)

=
1

n2

K
∑

k=1

nk
∑

j=1

varsrs(Ykj)

=
1

n2
nσ2

=
1

n
σ2.

(10)

Note that varsrs(Ykj) = σ2 because Ykj are all random sam-
ples under simple random sampling from the distribution of
Y . Next we make a connection between (8) and (10). First
let Z denote the stratum number of a random observation
from the distribution of Y under simple random sampling.
Note that Z is a multinomial random variable that takes
values 1, ..., K and P (Z = k) = pk. Then we have

varsrs(Y ) = Esrs(varsrs(Y |Z)) + varsrs(Esrs(Y |Z))

= Esrs(
K
∑

k=1

σ2
kI(Z = k)) + varsrs(

K
∑

k=1

µkI(Z = k))

=

K
∑

k=1

σ2
kEsrs(I(Z = k)) + Esrs(

K
∑

k=1

µkI(Z = k))2

− (Esrs(
K
∑

k=1

µkI(Z = k)))2

=
K
∑

k=1

σ2
kpk +

K
∑

k=1

µ2
kpk − µ2

=

K
∑

k=1

σ2
kpk +

K
∑

k=1

pk(µk − µ)2,

(11)

where I(Z = k) is an indicator variable with value 1 if Z = k
and 0 otherwise. Combing (10) and (11), we have

varsrs(Ȳ ) =
1

n

K
∑

k=1

pkσ
2
k +

1

n

K
∑

k=1

pk(µk − µ)2. (12)

To summarize the comparison between stratified sampling
and simple random sampling, estimates in both sampling
techniques are unbiased. But the variance of the estimate
in stratified sampling is smaller than that in simple random
sampling by 1

n

∑K

k=1 pk(µk−µ)2. The intuition for variance
reduction based on stratified sampling is that the variance
of the estimate based on simple random sampling can be
decomposed into within-strata variance and between-strata
variance. Stratified sampling achieves variance reduction by
removing the between-strata variance. Fundamentally, this
is because the mean of the business metric is different across
strata. From a sampling point of view, stratified sampling
removes the variation of sample size from each stratum for
a given total sample size n and thus reduces the variance of
the estimate.

3.4 Post Stratification
Post stratification is a popular post-assignment variance

reduction technique. It assumes simple random sampling
but uses the estimate in (2) instead of (1). Note that, when



simple random sampling is used, the estimates in (2) and
(1) are different. This is because the sample size nk from
the kth stratum is not necessarily equal to npk under simple
random sampling. Here nk, n, and pk are defined in Section
3.1. In fact, n1, ..., nK are all random under simple random
sampling. The intuition behind post stratification is very
simple. The weighted average (2) gives more weights to ob-
servations from the strata that are under-represented in the
sample. Thus if a sample is badly balanced for some covari-
ate such as signup country, the weighted average estimate
automatically corrects for it. We now sketch the derivation
of the variance of the estimate in (2) under simple random
sampling.

varsrs(Ŷstrat) = Esrs(varsrs(Ŷstrat|n1, ..., nK))

+ varsrs(Esrs(Ŷstrat|n1, ...nK))

= Esrs(
K
∑

k=1

p2kvarsrs(Ȳk|nk)) + varsrs(
K
∑

k=1

pkµk)

= Esrs(
K
∑

k=1

p2k
1

nk

σ2
k) + varsrs(µ)

=

K
∑

k=1

p2kσ
2
kEsrs(

1

nk

)

(13)

What is remaining to calculate the variance of the esti-
mate in (2) under simple random sampling is to calculate
Esrs(

1
nk

), where k = 1, ..., K. Note that, nk is a Bernoullian

random variable with expected value npk for given sample
size n. It can be shown that Esrs(

1
nk

) = 1
npk

+ 1−pk
n2p2

k

+o( 1
n2 )

[9], where o( 1
n2 ) is a residual term that converges to 0 faster

than 1
n2 as n → ∞. The proof in [9] is based on some com-

plicated factorial expansions because it is for more general
cases than the reciprocal of a Bernoullian random variable.
In this paper, we provide a simpler proof based on Taylor
expansion as follows.

Esrs(
1

nk

) = Esrs(
1

npk
+ (−

1

n2p2k
)(nk − npk)

+
1

n3p3k
(nk − npk)

2) + o(
1

n2
)

=
1

npk
+

1

n3p3k
Esrs(nk − npk)

2 + o(
1

n2
)

=
1

npk
+

1

n3p3k
npk(1− pk) + o(

1

n2
)

=
1

npk
+

1

n2p2k
(1− pk) + o(

1

n2
),

(14)

where the first equation is simply a Taylor expansion of 1
nk

at 1
npk

and the other equations follow from the fact that nk

is Bernoullian variable with mean npk and variance npk(1−
pk). Thus, we have

varsrs(Ŷstrat) =
1

n

K
∑

k=1

pkσ
2
k +

1

n2

K
∑

k=1

(1− pk)σ
2
k + o(

1

n2
).

(15)
Since pk’s, µk’s, K, and µ are finite values, we can always

find a large enough n such that the following is true.

1

n2p2k
(1− pk) + o(

1

n2
) ≤

1

n

K
∑

k=1

pk(µk − µ)2. (16)

When equation (16) is true, we have varsrs(Ŷstrat) ≤ varsrs(Ȳ ).
This shows that post stratification leads to variance reduc-
tion for large enough sample size. Hence for large enough n,
the comparison of variance of the estimates based on simple
random sampling, stratified sampling, and post stratifica-
tion can be summarized as follows.

varstrat(Ŷstrat) = varsrs(Ŷstrat) +O(
1

n2
) = varsrs(Ȳ ) +O(

1

n
),

varstrat(Ŷstrat) ≤ varsrs(Ŷstrat) ≤ varsrs(Ȳ ).

(17)

Thus, although it is true that the variance of the estimate
based on stratified sampling is the smallest, when n is large,
the variance difference between post stratification and strat-
ified sampling will be much smaller than that between sim-
ple random sampling and stratified sampling. This means
that post stratification achieves similar variance reduction
as stratified sampling when the sample size n is large. It
is worth pointing out the derivation of the variance in post
stratification requires a regularity condition that none of the
nk’s is zero [7]. Although the derivation of variance is only
of theoretical interest, in practice, we need a mechanism to
estimate the mean for those strata that do not have any ob-
servation in a cell. One way is to pool or collapse similar
strata [7]. This is potentially an issue for post stratification
in practice.

3.5 CUPED
Another variance reduction technique is based on control

variates. It has been used in Monte Carlo simulation [5].
One can think of the control variates here as covariates de-
fined in Section 3.1. The control variates technique was ap-
plied to controlled experiments as a variance reduction tech-
nique in [3]. The authors name the technique CUPED (con-
trolled experiments utilizing pre-experiment data) in their
paper because the control variates in their paper are based
on pre-experiment data. CUPED is also a post-assignment
variance reduction technique because it is based on sim-
ple random sampling. Next we briefly review how CUPED
works. Suppose the pre-experiment dataX is a one-dimensional
control variate. In CUPED, instead of looking at the busi-
ness metric Y , we look at a new metric defined as

YCUPED = Y − θX, (18)

where θ is some parameter that needs to be defined. Next
we discuss how to choose θ to complete the definition of
the new metric. For the variance of YCUPED under simple
random sampling, we have

varsrs(YCUPED) = varsrs(Y )+θ2varsrs(X)−2θcovsrs(X,Y ),
(19)

where covsrs(X,Y ) is the covariance between X and Y un-
der simple random sampling. Using simple calculus, we can
show that varsrs(YCUPED) is minimized by choosing θ equal
to covsrs(X,Y )/varsrs(X), where the minimal value is

varsrs(YCUPED)min = varsrs(Y )(1− ρ2), (20)

where ρ = corrsrs(X,Y ) is the Pearson correlation between
X and Y under simple random sampling. The intuition be-



hind variance reduction using control variates is that the
total variance of the business metric Y can be decomposed
into two parts: the part that is caused by the variance of
the control variate X, and the part that is explained by
other unknown variables. By looking at the corrected met-
ric YCUPED, we have removed the variance caused by X and
thus the variance is reduced. So far, the discussion is all in
the context of a single cell. It is clear that Esrs(YCUPED)
is different from Esrs(Y ). In controlled experiments, we are
typically interested in the difference between the means of
the business metric in a test cell and the control cell. Hence
the authors suggest using the same θ for different cells so
that the difference between the means of the new metric
YCUPED is the same as that of the original business metric
Y . In practice, θ can be estimated based on pre-experiment
data once we know X. Based on (20), X should be chosen
to maximize the magnitude of corrsrs(X,Y ). In practice,
the authors suggest using the same metric Y in the pre-
experiment period because the same metric over different
time periods typically correlate well. In our analysis, we
take the authors’ two suggestions: using the same θ across
cells, and using the same business metric prior to experi-
ment as the control variate.
There is also an interesting connection between CUPED and
stratified sampling. When X is categorical, it can be math-
ematically shown that CUPED and stratified sampling (X
is used to define strata in stratified sampling) is equivalent.
For the detailed proof, please see [3].

4. NETFLIX’S IMPLEMENTATION OF

STRATIFIED SAMPLING
We have learned through years of research that many fac-

tors not related to the product correlate with our business
metrics. For example, the signup country of users correlates
with retention. The most impactful factors are leveraged as
covariates in stratified sampling to help reduce the sampling
variance of business metrics. More covariates are leveraged
for existing members since we know more about them. Re-
sults in Section 5 show that this extra information for exist-
ing users leads to significantly more variance reduction.
Prior to running an experiment, a target sample size is de-
termined, and triggers for assigning users to the experiment
are defined. For new users, the trigger is signing up for Net-
flix. For existing users, an example of trigger for a product
change on the Netflix kids webpage could be a user visit to
that page. The triggering rule and target sample size to-
gether decide the length of the recruitment period, which
can last weeks. In this context, assigning users to cells hap-
pens in real-time when the trigger condition is satisfied.
Implementing stratified sampling in a real-time assignment
scenario is rarely discussed and poses the challenge of having
equal representation of the covariates in the test and control
cells throughout the whole recruitment period. To address
this issue, we rely on a queue system composed of one queue
per experiment e and stratum s. Each queue consists of 100-
slot segments. Prior to user assignment, the sampling rate
for each cell in the experiment is specified. Sampling rate for
a cell is defined as the share of users in the experiment that
receive the experience in the cell. The cell sampling rate
ranges between 0% and 100% in an increment of 1%. For
each segment of 100 slots, the slots are mapped to cells such
that the share of slots assigned to a cell exactly matches the

sampling rate for that cell. Note that the increment cannot
be more granular than 1% due to the 100-slot segment de-
sign.
Here is a simple example to illustrate the assignment in a
single segment. Suppose we want to run an experiment with
two cells and allocate 50% of the users to each of the two
cells. We first get a sequence of integers between 1 and 100
as seen in Figure 1 (a) and then reshuffle this sequence as
in Figure 1 (b). Finally we map integers 1-50 to Cell 1 and
51-100 to Cell 2 as in Figure 1 (c). As mentioned above, a
queue consists of many 100-slot segments. The cell assign-
ment in each 100-slot segment is done independently from
each other within a single queue, and independently across
queues. When a new user eligible for the experiment signs
up, we first decide the strata that he falls into based on
his covariate information and then assign him to the corre-
sponding queue for his strata. He will then take the next
available slot in the queue and gets assigned to the cell for
the slot. A simple example of new user assignment with two
strata and two cells is shown in Figure 2.
The implementation of stratified sampling based on our queue
system does not always achieve perfect balance of strata
across cells. This can diminish the amount of variance re-
duction based on stratified sampling. There are two factors
that contribute to the imbalance.
Firstly, we only guarantee perfect balance within each seg-
ment of 100 slots. Thus the total sample size of a stratum
across cells needs to be a multiple of 100 to achieve perfect
balance. For example, if there are 100,090 users in a stratum
prior to cell assignment, then the queue system guarantees
balance for the first 100k users but not the last 90 users. For
the last 90 users, the actual sampling rate in each cell may
not exactly match the intended sampling rate. And thus, af-
ter cell assignment, the percent of users from each stratum
may be different across cells. The rationale for having a seg-
ment size of 100 is mainly for the convenience of specifying
sampling rate per cell (increment of 1%). Potentially we
can decrease the segment size to achieve better balance but
it also makes the sampling rate specification less granular,
e.g., if we change the segment size to 50, then the sampling
rate needs to be in increment of 2%. The impact of this
imbalance depends on the sample size in each stratum.
The second factor preventing us from achieving perfect bal-
ance is that we usually have to use many machines to con-
duct the sampling because of both high volume of sampling
requests and occasional failures of the machines. With M
machines, there will be M queues for experiment e and stra-
tum s. When a user eligible for an experiment signs up, he is
first randomly assigned to a machine, and then assigned to
a queue on the machine based on his covariate information,
and finally he takes the next available slot in the queue and
gets assigned to the cell for the slot. It is intuitive that with
multiple machines, it is more difficult to achieve the strata
balance across cells. For example, if the sample size of a
stratum for the whole experiment is 100k, it would achieve
perfect balance with a single machine but not necessarily
with multiple machines because the number of users from
the stratum on each single machine is not necessarily a mul-
tiple of 100. The likelihood to achieve perfect balance de-
creases as the number of machines increases. The impact of
the number of machines on the variance reduction amount
based on stratified sampling is quantified in the next section.



Figure 1: Illustration of Cell Assignment in One Segment: (a) generate a sequence of integers between 1 and
100, (b) random shuffling of the sequence of integers, (c) mapping of integers to cell

Figure 2: Illustration of stratified sampling with one machine for new users

5. EMPIRICAL EVALUATION

5.1 Evaluation Methodology
In this section, we compare the amount of variance reduc-

tion achieved by stratified sampling, post stratification and
CUPED on a few datasets from Netflix. The business met-
rics considered are customer retention and seven out of the I
streaming thresholds defined in Section 2.2. Simple random
sampling is used as the baseline to estimate the amount of
variance reduction achieved by each technique. The com-
parison is done on both new and existing users. For each
user type, we collect covariates and business metrics for a
cohort of users. We define these users as the population and
repeatedly simulate A/A experiments, which are controlled
experiments with two cells and zero effect size. In the case
of stratified sampling, an A/A experiment is simulated by
splitting users into two cells based on the implementation
described in Section 4. For post stratification and CUPED,
an A/A experiment is simulated by splitting users into two
cells based on simple random sampling. After the user as-
signment to two cells in a single A/A experiment is deter-
mined, for each business metric, we compute an estimate of
the effect size. For the simple random sampling baseline,
this estimate is the difference of the simple sample aver-
ages in (1). For stratified sampling and post stratification,
this estimate is the difference of the weighted averages in
(2). For CUPED, this estimate is the difference of the av-
erages for the corrected metric in (18). For each business
metric and variance reduction technique, 100k A/A experi-
ments are simulated independently from each other on the
same cohort of users, yielding 100k estimates of the effect
size. The sample variance of these estimates is then com-
pared with the theoretical variance based on simple random
sampling to quantify the amount of variance reduction for

each metric and technique combination. For stratified sam-
pling, we also estimated the variance reduction percentage
pretending there is only one machine to get a sense of the
additional variance introduced by the use of multiple ma-
chines. For new users, we do not have pre-experiment data
for streaming and retention that can be used for CUPED.
Thus, eight regression models (one per metric) were built
on a different set of users from those used to simulate our
A/A experiments. The predictors in the regression mod-
els are the same set of covariates used to define strata in
stratified sampling. This ensures fair comparison between
CUPED and stratified sampling. The predicted mean val-
ues of the metrics from the models are then used as pre-
experiment data. For existing users, the same metric is used
as the pre-experiment data for the streaming thresholds. We
did not apply CUPED on retention for existing users since
the amount of variance reduction for retention is very small
based on the other techniques and we do not expect CUPED
to make a significant difference. We report on the variance
reduction point estimates along with error bars based on
Bootstrap [4] as a measure of the uncertainty of the results
based on a finite (although 100k is already pretty large)
number of simulations.

5.2 Results
The resulting variance reduction estimates are presented

in Figures 3 and 4, separately for new and existing users
for each of the eight business metrics (retention and seven
streaming thresholds). The results show that identifying co-
variates that are highly correlated with the business metrics
is key for the success of any of these variance reduction tech-
niques. The empirical results also align well with the theory
in Section 3. Indeed, ignoring challenges posed by practical
implementation, stratified sampling, post stratification and



Figure 3: New users. Variance reduction results of
stratified sampling, CUPED, and post stratification
compared to simple random sampling

Figure 4: Existing users. Variance reduction results
of stratified sampling, CUPED, and post stratifica-
tion compared to simple random sampling

CUPED achieve similar variance reduction amount when
leveraging the same covariates. However, in practice, the
variance reduction achieved by stratified sampling can be
severely impacted by the 100-slot design and the need to
use multiple machines as described in Section 4. This is
not the case for post stratification and CUPED which are
post-assignment techniques. See the following subsections
for more detailed findings.

5.2.1 Influence of Covariates

For new users, the amount of variance reduction achieved
is very low regardless of the metric or the variance reduction
technique used. This is due to the lack of covariates highly
correlated with the business metrics for these users at the
time of cell assignment. Indeed, the Pearson correlation be-
tween the covariates and business metrics ranges from 0.2
to 0.4 for new users.
For streaming thresholds, the variance reduction for existing
users can be up to 40% because we included pre-experiment
streaming activity as a stratification dimension or in the
post-assignment correction. Note that for existing users, the
lowest streaming threshold T1 prior to the experiment is the
only streaming threshold used as covariate in stratified sam-
pling and post stratification. Thus it is expected that the
amount of variance reduction becomes lesser as the stream-
ing threshold moves further away from T1 and the correla-
tion between this covariate and these streaming thresholds
becomes weaker.
For retention, while the amount of variance reduction is
small for both new and existing users, it is higher for new
users. The reason is because the covariates used to define

strata for new users are more correlated with retention than
for existing users. Also new users get a free trial in the
first month and there is more user-level variation of reten-
tion than for existing users who have already passed the free
trial period and whose retention metric becomes less sensi-
tive.

5.2.2 Post Stratification Observations

For all the metrics and both user types, post stratification
is comparable to stratified sampling with one machine. This
is consistent with the theoretical understanding that post
stratification achieves similar variance reduction as stratified
sampling when the sample size is large. The sample size in
the dataset used for evaluation is at the scale of hundreds of
thousands.

5.2.3 Stratified Sampling Observations

As discussed in Section 3.3, from a sampling point of view,
stratified sampling achieves variance reduction compared to
simple random sampling because it removes the variation
of the sample size from each stratum once the total sample
size n is given. In Section 4, we described how the practi-
cal implementation of stratified sampling cannot completely
remove this variation because of the use of a 100-slot queue
system and the need to conduct sampling on multiple ma-
chines. The empirical evaluation shows that for existing
users, variance reduction based on stratified sampling with
multiple machines is less than half of that with one machine.
This impact is not as clear for new users for whom the num-
ber of machines used for sampling is only one fifth of that
for existing users. Also the increase in the number of ma-
chines tend to have a larger impact on existing users that
have smaller strata sizes.
To provide some intuition around the impact of multiple
machines, we run an evaluation procedure similar to the one
described in Section 5.1 on a cohort of existing users. In this
evaluation, we show the impact of number of machines on
the sampling variance of the sample sizes of each stratum.
Since there is more than one stratum, we define a weighted
average of standard deviation metric as follows

K
∑

k=1

pkσk, (21)

where pk is the proportion of users from stratum k in the
population and σk is the standard deviation of the sam-
ple size from stratum k in a random sample for fixed total
sample size n. The number of machines used for stratified
sampling is varied from one to two hundred. For a given
number of machines m, we simulate 100k A/A experiments
to estimate σk. Each A/A experiment first randomly assigns
users to machines and then for each machine splits users into
two cells based on stratified sampling as described in Section
5.1. The estimates of σk are then plugged into (21) to get
the estimate of the weighted average of standard deviation
metric. The results are shown in Figure 5. Note that the
variation of the weighted standard deviation metric mono-
tonically increases as the number of machines increases. The
error bars are calculated using the Bootstrap technique [4].
There is no error bar for simple random sampling because
it is the theoretical value. So, as the number of machines
increases, the variation of the sample size from each stratum
increases, which translates to higher variance of the final es-



Figure 5: Impact of the number of machines used in
stratified sampling on strata sample size variation

timate based on stratified sampling and diminished variance
reduction based on stratified sampling.

5.2.4 CUPED Observations

CUPED performs slightly worse than stratified sampling
and post stratification for new users because the pre-experiment
data in CUPED is essentially a one-dimensional summary of
the covariates used to define strata and there is some loss of
information in this summary.
For existing users, we have the flexibility of correcting stream-
ing thresholds with the same metric prior to the experi-
ment. Hence the amount of variance reduction is consis-
tently around 40% for all the streaming thresholds. Finally,
it is worth emphasizing that the difference in variance re-
duction between CUPED and the other techniques for high
streaming thresholds on existing users in Figure 4 is due to
the difference of covariates used in the techniques, not the
techniques themselves. The comparison settings were set as
such because the initial objective of this case study was to
compare CUPED with what was used in production at Net-
flix. We also did a fair comparison between CUPED and
post stratification by using exactly the same covariates for
each of the streaming threshold metrics on existing users.
The results in Figure 6 clearly show that these two tech-
niques perform comparably when using the same covariates.
This is expected due to the following two reasons.

• Post stratification achieves similar variance reduction
as stratified sampling when the sample size is large,
which is true here.

• Stratified sampling is equivalent to CUPED when the
covariate is categorical, which is also true here since
the covariates are binary streaming thresholds. For
more on this point, please see the appendix of [3].

Comparisons with stratified sampling based on the same co-
variates are omitted since we expect stratified sampling to
perform the same as post stratification given the large sam-
ple size in the data.

6. CONCLUSIONS
For companies that use controlled experiments to make

product decisions, it is critical to run highly sensitive con-
trolled experiments in order to not miss product changes
that can have a substantial impact on user experience and
revenue. In this paper, we focused on improving the sensi-
tivity of controlled experiments by reducing sampling vari-
ance of the business metrics. We compared a few variance

Figure 6: Existing users. Variance reduction of
CUPED and post stratification using the same co-
variates compared to simple random sampling

reduction techniques, both at-assignment (stratified sam-
pling) and post-assignment (post stratification & CUPED).
We showed that theoretically, these techniques achieve sim-
ilar variance reduction when the sample size is large, which
is typically the case in online controlled experiments. We
applied them to a few Netflix datasets and our empirical re-
sults aligned with theory when the same set of covariates is
used for all the techniques. However, in practice, stratified
sampling performs worse than post-assignment techniques
such as post stratification and CUPED because real-time
experimental assignment requires a queue system and the
use of multiple machines. Moreover, post-assignment tech-
niques are cheaper to implement, and very flexible in choos-
ing the covariates for post-assignment correction. It is thus
recommended to apply post-assignment variance reduction
techniques when running large-scale controlled experiments.
Our results on new users emphasize that identifying covari-
ates that are highly correlated with the business metrics is
key for the success of variance reduction techniques. In cases
where such covariates cannot be easily found, other methods
to improve the sensitivity of controlled experiments should
be explored. At Netflix we continuously research new user
engagement metrics that are a better tradeoff between sensi-
tivity and correlation with retention to help make better pro-
duction decisions. In the context of TV/movie recommenda-
tion and search algorithms, we leverage offline experiments
as a pre-selection mechanism to reduce the number of test
cells in a single experiment run online. With fewer test cells
, larger sample sizes can be used for each cell and sensitivity
is thus improved. See [6] for a more complete description of
the offline experiments method as well as its challenges. An-
other example is leveraging interleaving-based experiments
[1] to remove the between-user variance associated with our
traditional controlled experiment design. Finally, more so-
phisticated experimental designs such as fractional factorial
designs [10] can be used to reduce the number of test cells
when multiple changes are tested in one single experiment.
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