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Abstract
Given the changing dynamics of mobility patterns and rapid
growth of cities, transport agencies seek to respond more
rapidly to needs of the public with the goal of offering an
effective and competitive public transport system. A more
data-centric approach for transport planning is part of the
evolution of this process. In particular, the vast penetration
of mobile phones provides an opportunity to monitor and
derive insights on transport usage. Real time and histor-
ical analyses of such data can give a detailed understand-
ing of mobility patterns of people and also suggest improve-
ments to current transit systems. On its own, however, mo-
bile geolocation data has a number of limitations. We thus
propose a joint telco-and-farecard-based learning approach
to understanding urban mobility. The approach enhances
telecommunications data by leveraging it jointly with other
sources of real-time data. The approach is illustrated on the
first- and last-mile problem as well as route choice estima-
tion within a densely-connected train network.

Keywords
big data; mobility ; public transport route choice; map-
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1. INTRODUCTION

1.1 Background
Traditional transportation planning processes can be costly

and resource intensive since they are typically based on sur-
vey data. However, given the changing dynamics of mobility
patterns, it is important for cities to maintain a comprehen-
sive and high-frequency knowledge of mobility patterns. A
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data-driven approach to the monitoring, analysis, and plan-
ning of transport operations is paramount for smart cities.

The deep penetration of mobile phones provides an op-
portunity for transport agencies to monitor and derive valu-
able insights from commuters, and across their entire trips.
With the proper analytics, anonymized mobile geolocation
data has the potential for providing a detailed understand-
ing of mobility patterns, with visibility on the trip segments
traditionally un-observed, such as the first and last miles
part of the trip. This understanding could then trigger a
data-driven feedback for public transit improvements.

On its own, however, mobile geolocation data has a num-
ber of limitations. For example, the spatial resolution of
the mobile geolocation data, for records without GPS infor-
mation, may lead to high uncertainty in derived movement
patterns. Secondly, the uncertainty in the penetration of
mobile devices means that quantitative assessments of den-
sities or volumes cannot be known precisely. Lastly, the
heterogeneity of those two sources of errors over space (and
time, for the latter) adds further difficulty to the results
obtained from mobile geolocation data.

We thus propose a farecard-based learning approach to
understand urban mobility from telecommunications data.
Fusion with farecard data allows for harnessing the power
of the mobile geolocation data while compensating for its
limitations. In particular farecard data provides highly ac-
curate quantitative knowledge on station to station travel-
times and volumes, which can help anchor end-to-end tra-
jectory information provided by mobile geolocation data.

We are also interested in designing Big Data models for
two main types of analyses, namely the so-called first and
last mile of public transport users, and the route choice of
public transport users in the public transport network. Both
require trajectory analytics and data fusion, which are de-
scribed in this article.

First and last mile analysis is of importance to transport
authorities to aid in defining services to and from train sta-
tions, including feeder bus routes and on-demand minibus
service. The route choice of train passengers in a train net-
work such as Singapore’s is not directly available from the
farecard data and so must be deduced from other sources.
It is valuable to transport authorities in understanding route



crowding within the network, and adjusting accordingly route
information systems. Additionally, the understanding of ex-
planatory factors for route choice (travel-time, fare, etc.) is
fundamental for planning.

1.2 Related work
With the increase of mobile data, the concept of crowd

and community sensing [20] has seen a growing popularity
in the recent decades. With the availability of GPS chips and
additional sensors indirectly providing location contexts on
most smartphones, spatio-temporal analytics which used to
rely on inaccurate low-sample cellphone data has seen re-
newed interest for this new analytic superfood [17]. Mobile
geolocation data has been used for instance for real-time
traffic monitoring [36], adaptive routing [6, 30] and path in-
ference [15] in the context of GPS-based participatory sens-
ing, combined with other sources for city planning [28], and
even as a potential replacement for the fixed sensing infras-
tructure, in particular on expressways [25].

A considerable amount of literature has been focused on
extracting spatio-temporal activity patterns from large cel-
lular network datasets [1], in combination with social me-
dia [11], and in some cases leveraging models from statisti-
cal physics [10]. Remarkable structure and consistency has
been exhibited within mobile datasets [4, 31], supporting the
design of long-term mobility forecast models able to achieve
unexpectedly high accuracy [29]. It has been shown that
based on mobile data, it is possible to identify tourists from
residents, identify hotspots within a city, and detect pre-
ferred activity sequences, see for instance [3, 8, 34].

In the recent years, a growing literature has been con-
cerned with augmenting geospatial and mobility insights
with semantics information [18], in particular using social
media during events [27] and for prediction of level of ser-
vice on public transport networks [26].

In Singapore, the large penetration of mobile phones and
the relatively high population density have been conducive
to a number of studies analyzing public mobility patterns [21],
deriving insights on the network resilience [14] based on net-
work connectivity indicators and crowding. In [13] a system
was developed to derive passenger traffic and route recom-
mendations for the train network, using train network spe-
cific cell tower information. These studies serve as a building
block for nation-wide simulation engines [24, 32], which can
in turn support enhanced response to incidents [12, 16, 33].

In parallel, Big Data and cloud computing platforms have
emerged leveraging fast and efficient frameworks able to run
spatio-temporal and statistical models at scale [19] on ter-
abytes of data.

We focus on the study of travel patterns which usie the
public transit network. This requires the development of
novel analytics for travel mode detection in the context of
spatially uncertain mobile geolocation data. We further de-
rive new actionable insights by fusion of mobile geolocation
data with farecard data, and show that such insights can
support the deployment of new data-driven practices for
real-time monitoring and transit planning.

1.3 Contributions
In this work, we generate insights on the Singapore public

transport mobility patterns through a fusion approach which
includes mobile geolocation data as well as farecard data

from the public transport network. The contributions of
this work include:

• the development of trajectory analytics for mobile ge-
olocation data calibrated automatically from farecard
data, allowing for both high accuracy and high spatial
coverage,

• application of the calibrated travel pattern model to
the analysis of the first and last mile problem, with
categorization of train stations according to their ac-
cessibility properties,

• the development and calibration of data-driven route
choice models and the resulting analyses of public trans-
port route choices, in particular explanatory features,
by using the calibrated travel pattern model.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the data characteristics, Section 3 presents
our Big Data platform, and Section 4 introduces the core
analytics developed for the particular use cases of interest,
as well as our calibration procedure. Section 5 presents the
insights obtained on the problem of the first and last mile,
and Section 6 addresses the problem of understanding the
explanatory factors of public transport route choices. Fi-
nally, Section 7 provides concluding remarks.

2. DATASET
In this section, we describe our two main sources of move-

ment data: the anonymized StarHub mobile geolocation
data and the anonymized Singapore Land Transport Au-
thority (LTA) farecard data, as well as the key characteris-
tics of the public transport network.

2.1 Public transport network characteristics
The public rail network used in this study is composed

of five Mass Rapid Transit (MRT) lines: the North-South,
East-West, North-East, Circle and Downtown lines. There
are 123 stations on the five lines, of which 15 are interchange
stations connecting two or more lines. The network boasts
a ridership of over 2 million passengers per day.

2.2 Farecard data
All train fares on the Singapore public transport network

are paid using cashless smart cards which require a passen-
ger to tap in to enter the network and tap out to exit the
network, thus providing the origin, destination, time, and
travel-time, of every journey within the train network. The
anonymized farecard data thus has a unique entry for each
origin-destination journey made by a commuter including
the following data fields for each journey (1) anonymized
card ID, (2) origin MRT station, (3) destination MRT sta-
tion, (4) entry timestamp, (5) exit timestamp.

2.3 Mobile geolocation data
The StarHub mobile geolocation data format includes a

unique anonymized entry for each geo-localized record gen-
erated from a StarHub anonymized customer mobile phone,
including the following fields; (1) record time, (2), anonymized
user ID, (3) latitude, (4) longitude, (5) accuracy, (7) network
event type, where the various network events are further de-
scribed in the following section.



3. BIG DATA PLATFORM
In this section, we describe the Big Data platform sup-

porting the analytics components. We use IBM City in Mo-

Figure 1: IBM City in Motion: Conceptual Architecture.

tion (CiM) system. The system is built on a Hadoop-based
platform with a custom spatio-temporal engine.

The conceptual architecture of CiM is shown in Figure 1.
The CiM acts on mobile geolocation data to provide mean-
ingful insights about movement patterns in a city. Core
algorithms are generically constructed such that CiM can
be used as a fundamental system for spatio-temporal ana-
lytics in various domains such as Smarter Transportation
Planning, Cellular Network Planning, Visitor Analytics for
different points-of-interest, and Law Enforcement. We now
briefly explain the main components of the system.

3.1 Data and Ingestion
CiM ingests generically available mobile geolocation data

including network events, and other forms of openly avail-
able data such as maps.

Generic mobile geolocation inputs.
Network event data consists of anonymized subscriber-

level events that are recorded by the network. Network
events are usually generated under the following conditions:
(1) place or receive a call or SMS, (2) periodic log of mobile
data usage, (3) location update (typically, when anonymized
user moves from one region of the city to another), or (4)
network event such as network congestion, call drop, etc.

In addition to the network events, CiM ingests location
context and map data. The map data provides CiM with
details about the road and the rail network, and is used by
the analytics engine to reason about the mode of transport
of the anonymized user. Point-of-interest data provides in-
formation about important locations to be analyzed, such
as malls and train stations.

Extract, Transform, Enrich, Load.
One of the most challenging tasks in ingesting network

events is handling the scale, which may range from hundreds
of millions to over a billion records per day. CiM ingests
network events using Apache Flume and Kafka thus allowing
CiM to reach this scale.

Network event data is enriched and converted to a stan-
dard format called the Denormalized Network Event (DNE).
Here, only selective fields required for analysis (anonymized
user identifier, time-of-the-event, and event type) are used
and the rest of the record is excluded. In this study, we in-
gest close to 3 billion records for around 2.6 million anonymized
users.

The multi-dimensional DNE data is indexed and stored
in Hive tables [7]. Indexing the data is not a trivial task.
Each analytic component may query the data using differ-
ent dimensions; certain analytics require all events of an
anonymized user for a given time-frame, others may require
all events within a certain space-time window. Thus there is
no single optimal way to index and cluster the data. We par-
tition the DNE first by time (at date granularity), and then
cluster by the user id. This enables the core algorithms – the
dwell and trip analytics – to compute meaningful locations
and trips of an anonymized user in a given time period.

3.2 Road/Rail Network Algorithms
Several analytics require basic spatio-temporal algorithms

on graphs, such as the road and rail network, to determine
the location context of the user. Examples of such ana-
lytics in CiM include detection of mode of transportation
used and computation of the shortest path on the rail net-
work. The main graph-based spatio-temporal functionali-
ties in CiM are: (1) ingestion of the road and rail network;
(2) fast shortest-path algorithms on the graph between two
points using constrained graph search; (3) Hidden Markov
Model (HMM) based map-matching algorithm to identify
the most likely trajectory on a road or rail network given
mobile geolocation data [23]. On the Hadoop platform, the
road and rail network are stored in Hive tables. The algo-
rithms for shortest-path and map-matching are exposed as
Hive User Defined Functions (UDFs).

3.3 Visualization
For visualization purposes, we aggregate trajectories by

origin zone-destination zone (OD) pairs, where zones are
250m x 250m squares. The start and the end point of the
trip computed by the trajectory cut algorithm, described in
the following section, are mapped to their respective zones.
We aggregate the number of trajectories at 1 hour inter-
val periods for each day and the estimated aggregate origin
destination flow is used by the application-specific modules.
We also provide the mean and median measures for the trip
distance and duration, along with the number of trips for
an OD pair. Figure 2 corresponds to the OD visualization
described, for various times of day.

4. MOVEMENT PATTERN ANALYTICS
CiM consists of two types of fundamental spatio-temporal

analytics: (1) Dwell analytics determine the meaningful lo-
cations where people spend time, and (2) Trip Analytics de-
termine how people move. Properties of mobile geolocation
data render these analytics non-trivial.

First, mobile geolocation data is very sparse (around 40
events per person per day) compared to GPS location traces,
typically sampled around 1 Hz. In addition, geolocation un-
certainty in cellular data typically ranges in the hundreds of
meters, whereas GPS data uncertainty is less than 10 me-
ters. Hence, our cellular spatio-temporal analytics compo-



(a) Morning traffic flow

(b) Evening traffic flow

Figure 2: Origin Destination weekday traffic: repre-
sented by a green arrow from the origin with red head at the
destination. The morning traffic toward the Central Busi-
ness District and evening traffic from the Central Business
District on the South can be observed at peak times.

nents are tailored to spatially uncertain and under-sampled
geolocation data.

4.1 Dwell analytics
Dwell analytics estimate user home and work location

based on the duration of stay at different times of the day.
Dwell analytics also estimate additional anonymized user-
specific meaningful locations, where an anonymized user spends
significant time during weekdays and weekends. Home, work
and meaningful locations can be aggregated and visualized
as a heatmap of where people live, work or spend time. Im-
portant places of an anonymized user are stored into HDFS
as Hive tables. They are also stored in Elastic-Search, which
is an indexed storage for fast retrieval [5]. Home, work
and meaningful locations are indexed by the anonymized
user identifier and the spatial zone coordinate. In addition,
meaningful locations are also indexed by type of day (week-
day/weekend) and 90th percentile of the time range of visits
to the given location.

4.2 Trip analytics
The Trip Analytics component estimates anonymized user

trajectories from raw DNE data. We describe some of the
core trajectory algorithms below, focusing on the scalability
and Big Data aspects.

Trajectory segmentation.
We utilize stay-point detection algorithms [37] to detect

the start and end of a meaningful trip of a user. All the trips
of a user are stored into the Hive table. This table serves
as a foundation for all trajectory-related algorithms in CiM,
such as origin-destination analysis.

Trajectory fencing.
A common requirement consists of assessing whether a

trajectory intersects a point of interest. For example, to
determine if a user has possibly traveled in a train, it may
be useful to compute if the user trip intersects a train station
polygon. We have developed trajectory fence algorithms to
determine if a trajectory cuts a polygon. The polygon of
interest is divided into disjoint triangles and a trajectory
into a set of lines between hops. The algorithm checks if
any line of a trajectory cuts at least one triangle using a fast
line cutting polygon algorithm [22].

Trajectory similarity.
It is often required to estimate the distance between two

trajectories, for instance a user trip and a train route. We
have developed trajectory similarity algorithms based on
least common substring (LCSS) [35].

4.3 Travel mode detection
In order to provide public transit specific travel patterns

insights from mobile geolocation data, it is necessary to iden-
tify the subset of the total daily trips including a public
transit network segment. To this end, we propose a four-
phase approach to process the time-series of sparse mobile
geolocation data network events and leveraging the farecard
and potentially other sources of real-time data.

In this work, we focus on identifying trajectories where
a significant sub-trajectory aligns with a train network seg-
ment. Applying a map-matching algorithm on all the trips
being prohibitively expensive from a computational stand-
point, we propose instead a fast two-step heuristic to effi-
ciently filter out trajectories that are unlikely to correspond
to a trip on the train network. A map-matching algorithm
is then applied to these filtered trajectories. Lastly, we join
the estimated train network trips with patterns estimated
from the farecard data, and iterate until a target accuracy
has been achieved.

Step 1: determine start and end train stations.
We recognize that a sampled trajectory trace can be a

trajectory on a train only if it cuts through at least two train
stations. We use the trajectory fence algorithm described
above to check if the trip cuts train station polygons. For
the filtered trajectories, we determine the start and the end
train stations in this step. Next steps are executed only for
trajectories filtered in this stage.



Step 2: filter based on intermediate points.
We use a heuristic that all points of a trip between the

start and end train stations should be close to the rail net-
work. We store all line segments of the rail network within a
spatial index, such as r-Tree [9]. For each trajectory filtered
in step 1, we determine if any point between the start and
end train stations is farther than a threshold (1km in this
study) from the rail network segments. It that is the case,
we conclude that the trip does not correspond to a train trip
since at least one point between the candidate start and end
train stations is far from the rail network. Step 3 is only
applied to the trajectory successfully filtered by both step 1
and step 2.

Figure 3: Farecard-based learning: for a popular resi-
dential station (Tampines), a popular commercial/shopping
zone (Orchard) and a busy commercial station in the Central
Business District (City Hall).

Step 3: map-matching and similarity test.
We then snap the candidate trajectory on the rail-network

using the map-matching algorithm described in Section 3.2.
The HMM-based map-matching algorithm uses an adequate
observation noise model with a 1km variance. This rela-
tively large observation noise also causes scenarios where
trips corresponding to nearby roads may be falsely catego-
rized as train trips by the map-matching module. Hence,
we utilize a heuristic wherein we compare the sampled sub-
trajectory between the start and the end train station with
the map-matched sub-trajectory using a trajectory similar-
ity algorithm. If the similarity is sufficiently high, we accept
the trajectory as a train trip.

Step 4: farecard-based learning.
The output from step 3 is then appropriately scaled based

on estimated device penetration rate, and is compared against
similar observed quantities from farecard data. CiM iterates
if the error metric is too high. This process is illustrated in
Figure 3, representing a week of farecard tap-in data and
the corresponding tap-in as per step 3. Travel mode detec-
tion parameters are updated via local search based on the
observed discrepancy until convergence.

For each trip including a train network leg, we eventually
obtain from the travel mode detection component both a
sub-trajectory corresponding to the train segment, and an
entire end-to-end trajectory of the anonymized user trip as
per the DNE data. Both trajectories are stored in Hive
tables clustered by start and end train stations.

4.4 Evaluation
The general statistics of the dataset and movement pat-

terns are presented in Table 1 and Table 2.

Number of records 3089 M
Number of subscribers 1.7 M

Number of records per user 1800

Table 1: General Statistics for 15 days of data.

Number of Trips 33 M
Number of Trips after MRT
Filter

27 M

Number of MRT Trips after
Map-matching

21.1 M

Number of MRT Trips after
Calibration

14 M

Number of MRT Trips after
scaling by penetration factor

46.6 M

Number of MRT Trips as per
Farecard Data

40 M

Table 2: Movement Patterns (15 days)

The evaluation of the performance of the trajectory an-
alytics can be measured quantitatively on a network level
by computation of standard rank correlation, such as Spear-
man rank correlation coefficient or Kendall rank correlation
coefficient, presented in Table 3. Specifically, we compare
the ranked correlation coefficient for the origin-destination
flows, estimated on one hand from the farecard data, and
on the other hand from the mobile geolocation data.

Spearman rank Kendall rank
correlation coefficient correlation coefficient

0.60 0.44

Table 3: Top ODs matching: between farecard-based top
ODs and mobile geolocation-based top ODs.

For completeness, we also present in Table 4 typical val-
ues for the qualitative similarity between origin-destination
flow rankings from mobile geolocation and farecard data.
In the following section, we present applications of the cal-



Top ODs Matching between
cellular and farecard

100 40
500 225
1000 526
2000 1185

Table 4: Top ODs matching: qualitative metric.

ibrated mobile geolocation-based public transit travel pat-
terns model.

5. FIRST AND LAST MILE

5.1 Motivation
Using the results of the trajectory analytics, we analyze

the spatial distribution of the initial (first mile) and final
(last mile) segment of user trajectories before and after com-
pleting a probable train journey. The first and last mile are
key quantities for public transit planners, since (1) a signif-
icant part of the trip travel-time can be associated with the
first and last mile travel-time, and hence improvements to
first or last-mile segments can have a large impact to public
transport quality of service, and (2) there is currently very
little data about these trip segments. In this section, we
present our results for the spatial distribution of first and
last mile segments as well as for the average first and last
mile travel distances.

5.2 Residential vs shopping stations
The distribution of first mile locations of passengers board-

ing at Tampines MRT, a highly residential area, as estimated
from trajectory analytics applied to geolocation data, is pre-
sented as a heatmap in Figure 4. Using the same visualiza-

Figure 4: First mile origin points at residential sta-
tion: Tampines MRT (represented as a circle on the map).

tion format, we present in Figure 5 the estimated distribu-
tion of first mile locations of passengers boarding at Bugis
MRT, a popular commercial and shopping area. One can
observe that the origin for the shopping area are qualita-
tively much closer to the train station. This is confirmed
by the actual distances to the station for the first mile seg-
ments, presented in Table 5. Such insights can be derived
in quasi real-time via fusion of mobile geolocation data with

Figure 5: First mile origin points at a shopping area
station: Bugis MRT (represented as a circle on the map).

Distance (kms) Percentage Trips Percentage Trips
Tampines MRT Bugis MRT

0-1 39 75
1-2 51 24
2-3 7 1

Table 5: First mile length: for residential (Tampines) and
shopping (Bugis) stations.

farecard, and thus supports frequent analyses, relevant for
a fast-paced nation such as Singapore.

5.3 Analysis of first and last mile
The insights presented in the previous section for two sta-

tions can be reproduced for the entire train network. In
Figure 6, we present a histogram of the percentage of com-
muters at each train station for which the trip origin is lo-
cated within 1 km of the station. The left side of the his-
togram corresponds to stations with relatively low accessi-
bility (percentage of commuters starting their trip within 1
km of the station is low), whereas the right hand side of the
histogram corresponds to stations with relatively high acces-
sibility (percentage of commuters starting their trip within 1
km of the station is higher). Figure 7 presents the analogous
histogram for the last mile of the trip. The breakdown of

Figure 6: Distribution of first mile shorter than 1 km:
across 42 MRT stations.

the first mile histogram over a larger set of 42 train stations
is provided in Table 6. In Figure 8, we illustrate the impact



Figure 7: Distribution of last mile shorter than 1 km:
across 42 MRT stations.

Station Percent
trips
within
1 km

Station Percent
trips
within
1 km

Admiralty 84 Ang Mo Kio 33
Redhill 78 Orchard 30
Bugis 74 Bishan 30
Bukit Gom-
bak

71 Bukit Batok 27

Lavender 71 City Hall 24
Yio Chu Kang 66 Pasir Ris 23
Commonwealth 63 Buona Vista 23
Tanjong
Pagar

59 Jurong East 23

Aljuned 56 Yishun 21
Novena 55 Marina Bay 19
Dhoby Ghaut 53 Clementi 18
Somerset 50 Tampines 17
Braddell 42 Lakeside 15
Boon Lay 40 Toa Payoh 13
Eunos 40 Bedok 12
Queenstown 40 Paya Lebar 11
Kembangan 39 Newton 11
Kallang 38 Chinese Gar-

den
7

Table 6: Percentage of First Mile trips within 1 km of
MRT station.

of advantageous vs disadvantageous first (and last) mile on
the population of Singapore commuters. An origin station is
“advantageous” if the true origin is within 1 km for the top
quartile, and disadvantageous if the station is in the bottom
quartile. We obtain the affected population of commuters
from the farecard data. Note that perhaps surprisingly, the
two subsets are nearly the same size, at about 24% of the
total commuter trip population.

Figure 9 shows interestingly that the impact to Singapore
commuters in terms of both origin and destination being
advantageous is again nearly the same, since those com-
muters whose O and D are both disadvantageous correspond
to about 7% of all commuters for both groups.

Such insights are of use in new transit initiatives such
as Beeline [2] which aims to dynamically adapt direct bus
routes for high demand and high travel time origin-destination
pairs. Similarly, first and last mile results can also help iden-
tify suitable locations to target pilot green and light modes
deployment like bike-share and car-share facilities.

Figure 8: Roughly equal proportion of commuters
have advantageous vs disadvantageous origin sta-
tions, in terms of first mile.

Figure 9: Roughly equal proportion of commuters
have both advantageous vs both disadvantageous
Origin and Destination, in terms of first and last mile.

6. REVEALING ROUTE CHOICE FACTORS

6.1 Motivation
Commuters often decide between several possible train

routes from their origin to destination. The route choice
may be motivated by a number of factors: distance, travel-
time, comfort, crowdedness, cost. Estimating the sensitivity
of commuters to specific factors is a valuable aspect of pub-
lic transit planning, which can inform fare policy, service
augmentation decisions, and network extensions plans. Ad-
ditionally, a proper understanding of route choice is useful
in the real-time management of incidents and events on the
public transit network.

However, route choices and explanatory factors are not
directly observable from farecard data which provides ori-
gin and destination, but does not identify the route taken.
We leverage our trajectory analytics on mobile geolocation
data, described in Section 4, to provide complete estimates
of public transit trajectories, as a means to model the route
choice process.

For a given origin-destination pair, the probability of a
route within the public network being selected by comm-
muters is an output of the trajectory analytics component.
Figure 10 shows the distribution of likely number of used
routes across all OD pairs in the network, where a route
was assumed likely to be used in practice if the route choice
probability was at least 5%. In this section, we present a dis-
crete choice model for revealing the important explanatory
features (and their relative importance) governing commuter
decision of route choice in the train network.



Figure 10: Probability of route options set size across
all origin-destination pairs, as estimated from mobile geolo-
cation data.

6.2 Discrete choice model
Let the graph G = (V,E) represent the train network,

where V = [v1, · · · , vn] are the stations and edges E =
(vi, vj) exist between connected stations si, sj . Edge at-
tributes include line id, distance, and other available features
such as crowd level.

For each station pair, we compute a set Pvi,vj of at most
pmax candidate paths which inherit the features of its edges.
We set an upper bound for the maximum path length in
order to avoid unreasonably long paths. For each station
pair vi, vj , the discrete choice set consists of the path set
Pvi,vj . The utility Ui,j,k of using path k is a function of the
path features and the origin-destination pair. The probabil-
ity of choosing path k reads pijk = Pr(Uijk > Uijl,l 6=k) =
eUijk/

∑
l=1...pmax

eUijl .

We use the following network features: (1) path length,
(2) number of interchanges, (3) mean frequency of the trains,
and (4) number of crowded interchanges, the latter two fea-
tures being estimated from farecard data. Specifically, an
interchange is labelled crowded for a candidate path if the
number of commuters for the intended station-line combi-
nation exceeds a threshold at that time of the day.

For consistency, for each OD pair, we normalize the fea-
tures in the interval [0, 1]. The model parameters are the
weights associated with each feature in the utility function.
The model is calibrated using the number of passengers for
a given origin-destination pair from the farecard data, while
the candidate paths and the proportion of commuters using
a candidate path are provided by the trajectory analytics
described in Section 4.

Given the expected distinct route choices at different times,
we calibrate two distinct models for (1) morning peak on a
non-holiday week day, (2) off-peak on a non-holiday week
day. The morning peak model uses 13000 data points, and
we obtain R2 = 0.56. The off-peak model uses 28000 data
points, and we obtain R2 = 0.55.

We generate confidence intervals via bootstrapping of the
model coefficients using a normal distribution with mean
equal to the coefficient value and standard deviation equal
to the standard error of the coefficient estimation. We boot-
strap 1000 model executions and output a distribution of
probabilities for every route and origin-destination pair. Fig-
ure 11 shows an example bootstrap simulation for a given
route with choice probability 0.26.

Figure 11: Bootstrap simulation: for a given route.

6.3 Example: route choice set
We illustrate one set of results from the route choice model

on high occupancy routes from Ang Mo Kio, a popular res-
idential station to Tanjong Pagar, a popular office location
in the Central Business District of Singapore. Figure 12 de-
picts the route 1, with an estimated 52% of the commuters;
Figure 13 shows route 2 with an estimated 24% of the com-
muters having one extra line change. Figure 14 shows route
3, with an estimated 15 % of the commuters and two extra
line changes.

Figure 12: Route 1: with 52 percent Ang Mo Kio to Tan-
jong Pagar.

6.4 Explanatory features
The model feature coefficients and standard errors are

listed in Table 7. The results illustrate that path distance
remains the most important explanatory factor of the route
choice, both during the morning peak and off-peak. One can
also observe the relative increase of the sensitivity to crowd
level during peak times, indicating the preference for low
crowd level. The route choice model can be further improved
by considering specific commuter types, regular commuters
who know the network and would evaluate more advanced
features (such as interchange distance, queues at train doors,



Figure 13: Route 2: with 24 percent Ang Mo Kio to
Tanjong Pagar.

Feature Peak Off-peak
coefficient coefficient

Intercept 2.91 3.00
# Interchanges -1.22 -2.08
Distance -3.08 -3.07
Train frequency -0.64 -0.61
Crowd level -0.59 -0.26

Table 7: Feature importance: for both the peak and off-
peak models.

etc.) and non-regular commuters such as tourists with ad-
ditional activity-specific considerations (hotspots on route,
station attractivity, etc.)

7. CONCLUSIONS
We use mobile geolocation data and public transit data for

generating complete insights on public transit travel pat-
terns. We applied trajectory analytics on mobile geoloca-
tion data and showed that the limitations of mobile geoloca-
tion data can be addressed by leveraging the complementary
strengths of public transit data via appropriate calibration
and learning. We have shown that combining these data
sources helps provide an accurate and complete picture of
public transit trips, including first and last mile. The value
of these insights was illustrated on two typical transport ap-
plications. Our conclusions on the estimation of first and
last mile travel patterns show that the output of our sys-
tem can be used for the design of on-demand public transit
feeders and main public transit lines. We have also shown
that parameters that are critical for optimal public transit
planning, such as explanatory covariates for route choice,
can be estimated from the adequate combination of mobile
geolocation and public transit data via advanced learning
analytics.
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