
Scalable Time-Decaying Adaptive Prediction Algorithm

Yinyan Tan1, Zhe Fan1, Guilin Li1, Fangshan Wang1, Zhengbing Li1, Shikai Liu1, Qiuling Pan1

Eric P. Xing2, Qirong Ho2

1Research and Standard Department, Huawei Software Technologies CO. LTD
2School of Computer Science, Carnegie Mellon University

tanyinyan, fanzhe, liguilin, wangfangshan, zhengbing.li, liushikai, panqiuling@huawei.com
epxing, qho@cs.cmu.edu

ABSTRACT
Online learning is used in a wide range of real applications,
e.g., predicting ad click-through rates (CTR) and personal-
ized recommendations. Based on the analysis of users’ be-
haviors in Video-On-Demand (VoD) recommender system-
s, we discover that the most recent users’ actions can bet-
ter reflect users’ current intentions and preferences. Under
this observation, we thereby propose a novel time-decaying
online learning algorithm derived from the state-of-the-art
FTRL-proximal algorithm, called Time-Decaying Adaptive
Prediction (TDAP) algorithm.

To scale Big Data, we further parallelize our algorithm
following the data parallel scheme under both BSP and SSP
consistency model. We experimentally evaluate our TDAP
algorithm on real IPTV VoD datasets using two state-of-the-
art distributed computing platforms, i.e., Spark and Petu-
um. TDAP achieves good accuracy: it improves at least
5.6% in terms of prediction accuracy, compared to FTRL-
proximal algorithm; and TDAP scales well: it runs 4 times
faster when the number of machines increases from 2 to 10.
In our real running business cases, TDAP significantly in-
creases the degree of user activity, which brings more rev-
enue than existing ones for our customers.

1. INTRODUCTION
Online learning techniques [3, 9, 19, 24, 26, 30, 32] are

powerful tools for a wide range of emerging applications,
from online advertising [25] and personalized recommen-
dation [2, 28], to unusual events detection [35] and suspi-
cious URLs identification [23]. For example, in an online
IPTV Video-On-Demand (VoD) recommender system for
one of our customers, a giant Telcom company from Main-
land China, the accuracy of prediction (e.g., AUC) can be
significantly improved at least 4% using online learning tech-
niques compared to traditional batch (offline) learning tech-
niques [12,18,37].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’16, August 13–17, 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4232-2/16/08. . . $15.00
DOI: http://dx.doi.org/10.1145/2939672.2939714

Figure 1: The fast changing users’ watching counts on

different types of videos (Film, TV play and Animation)

from 2015-06-01 to 2015-06-07 on an online IPTV VoD

service.

To date, people and devices (from smart phones, to VR
Boxes, to coffee machines and cars) generate large volume
of data every day, which are with fast-varying (or fast-
changing) nature (a.k.a. concept drifting [11]). However,
existing online learning techniques may not be a good fit for
such fast-changing data, which are usually in form of exam-
ples with features and labels in practice. Let’s first illustrate
one of such data taken from a real-world application,

Example 1: Figure 1 shows features about users’ watching
counts on three different types of videos (Film, TV play
and Animation) during the time period from 2015-06-01 to
2015-06-07 on an online IPTV VoD recommender system in
a Telcom company from Mainland China.

From Figure 1, we observe that the watching counts on
different types of videos vary a lot under different time pe-
riod. In particular, in weekdays (from 2015-06-02 to 2015-
06-05), the watching counts of TV play at working hours
(08:00-18:00) on average are larger than those of the other
two types of videos (i.e., Animation and Film); Animation
views are the most from 18:00 to 20:00; and the number
of TV play increases again after 20:00. Besides, Animation
views from 08:00 to 18:00 on weekends (from 2015-06-06 to
2015-06-07) and Children’s day (2015-06-01) are larger than
those of the other two, which typically differ from the case
in weekdays (as above).

In short, from the above observation, we note that the
varying of users’ watching counts on different types of videos
between day and night, or between weekdays and holidays,
typically implies that the users’ watching preferences are

changing rapidly along the time series, which in fact brings
a big challenge to the design of the online learning algorithm
for the recommender system. 2

The above example raises one crucial concern to the ex-
isting online learning algorithm design: how to fit and scale
those big and fast-changing online data efficiently and prac-
tically? To answer the question, a scalable time-decaying on-
line learning algorithm is in need. However, two challenges
need to be addressed.

The first challenge is that the time-decaying algorithm re-
quires to fit the fast-changing online data. Unfortunately, up
to date, previous works [19,24,25,30,32] have not addressed
it well. On one hand, previous time-decaying algorithms ei-
ther weight data (or examples) by time-decaying functions
(e.g., [16, 17]) or just discard outdated examples (e.g., [3]),
which require full memory or keep only recent examples,
respectively. On the other hand, existing online learning al-
gorithms (e.g., mirror descent (MD) algorithm like TGD [19]
and FOBOS [30], and follow-the-regularized-leader (FTRL)
algorithm like RDA [32] and FTRL-proximal [24,25]), which
do not take the changes of the data into account, may not
respond the changes correctly. And worse still, the target
model generated from the existing online learning algorithms
may no longer be suitable for current data distribution, since
older history of models are equally weighted as the recent
ones in the learning procedure, which may decrease its (i.e.,
the target model’s) effectiveness.

For the second challenge, the time-decaying algorithm
needs to scale the big fast-changing online data. To the best
of our knowledge, previous works [34, 36, 37] only study the
parallelism of MD-like algorithms. And the parallelism of
FTRL-like algorithms are mentioned in [25] only, no detailed
solution is provided.

Contributions. This paper addresses scalable online learn-
ing problem with fast-changing data. The contributions are
characterized as below.

(1) We define a problem called time-decaying online con-
vex optimization TOCO problem (Section 2), where the tar-
get model approaches to the most recent models while older
history of the models are deemphasized, following a user-
defined time-decaying function.

(2) We propose a time-decaying adaptive prediction TDAP
algorithm to solve TOCO problem (Section 3), which incor-
porates with both the state-of-the-art FTRL-proximal al-
gorithm and an exponential time-decaying mechanism over
model update. Recursive closed forms of the model up-
date functions are proposed for computational efficiency and
memory saving.

(3) To scale big data, we first parallelize the TDAP algo-
rithm following the data parallel scheme [14] under bulk syn-
chronous parallel (BSP) [6] consistency model (Section 4), in
which recursive update methods considering time-decaying
factors are proposed, and detailed implementations are pro-
vided. To avoid the unnecessary costs due to the synchro-
nization policy (“blocking” of stragglers) of BSP, we further
parallelize the algorithm under stale synchronous parallel
(SSP) model, with accuracy guarantees from [13].

(4) Under real-world datasets, we experimentally evaluate
our algorithm on top of two well-known platforms (Sec-
tion 5): (a) general big data analytic platform Spark [27]
under BSP model; and (b) specific machine learning plat-

form Petuum [33] under SSP model. It is worth highlight-
ing that TDAP achieves good accuracy: it improves 5.6%
prediction accuracy, compared to FTRL-proximal algorith-
m, on both platforms; and TDAP scales well: it runs 4x
speedup when the number of machines increases from 2 to
10. We further observe that TDAP on Petuum runs faster
than that on Spark, and the former enjoys better scalability
with more machines.

In our production IPTV VoD service, when we switched
from FTRL-proximal to TDAP, we observed 5% more users
engaging on our service, and 10% longer engagement time
per user, approximately. We also observed that TDAP on
Petuum can process approximately one order of magnitude
more users than Spark, with the same cluster setup. While
both TDAP on Petuum and Spark are viable, we found that
deployment was easier and more efficient using Petuum.

Organization. This paper is organized as below: In Sec-
tion 2, we review some related work and formulate our
TOCO problem; We propose our TDAP algorithm to solve
the problem in Section 3; Section 4 then parallelize the
TDAP algorithm under both BSP and SSP consistency mod-
el; We experimentally verify our algorithm in Section 5 and
conclude this paper in Section 6.

2. ONLINE LEARNING ALGORITHM
In this section, we first introduce the related work. We

then give some details of the FTRL-proximal algorithm since
our algorithm are derived from the FTRL-proximal algorith-
m due to its superior performance. We end this section by
formulating our problem.

2.1 Related Work
We characterize related work as follows.

Algorithms with time-decaying property. Numbers of
time-decaying algorithms are proposed to address the con-
cept drifting [11] problem. On one hand, for gradual concept
drifting, full memory based approaches (e.g., [16] and [17])
use exponential or linear time-decaying functions to weight
data (or examples), i.e., the older the example, the small-
er the impact. For abrupt ones, on the other hand, partial
memory based methods (e.g., [3]) are proposed by discarding
examples outside a pre-defined window, only recent exam-
ples in the window are taken into account.

In contrast, we differ from the above as: (a) unlike full
memory based methods, we do not require to store all exam-
ples, which saves memory; (b) We consider all examples in
model training, such that information in previous examples
are not discarded; and (c) Our algorithms are able to tack-
le both gradual and abrupt concept drifting problems, with
tuning the time-decaying factor (to be seen in Section 3).

Online convex learning algorithms. Various online
learning algorithms are proposed to solve the online convex
optimization problem. We characterize it as the following
two types: (a) Mirror descent (MD) algorithms like truncat-
ed gradient descent [19] and FOBOS [30]; and (b) Follow-
the-regularized-leader (FTRL) algorithms like RDA [32] and
FTRL-proximal [26]. Moreover, [24] proves the equivalence
between the mirror descent algorithms and the FTRL algo-
rithms, and in particular, FTRL-proximal outperforms the
others in terms of accuracy and sparsity [25], and are wide-
ly used in industry, e.g., recommender system [2, 28] and
Advertisement system [25].

However, our algorithms differ from the previous ones in
the followings: (a) The effects of the older history of the
models on target model are scaled down with an exponen-
tial time-decaying function, while existing methods do not;
and (b) The time-decaying factors are embedded into the
recursive closed form of model update functions, similar to
the FTRL-proximal algorithm in [25].

Parallelism of online learning algorithm. In the litera-
ture, there are various existing works on parallelized machine
learning algorithm [10, 12, 18]. Meanwhile, lots of machine
learning platforms are proposed [1, 8, 22]. Among others,
relate to online learning context, techniques for paralleliz-
ing mirror descent (MD) algorithms, in particular, stochas-
tic gradient descent (SGD) algorithm have been intensively
studied. [36] proves that parallelized SGD converges well
with decayed updates. [37] presents the first parallelized
SGD including a detailed analysis and experimental evi-
dence. [34] proposes a user-friendly programming interface
for parallelizing SGD. [25] also mentions the parallelism of
the FTRL-like algorithms, but no detailed solution is given.

However, in contrast to previous works, we (a) pro-
pose recursive model parameters update functions embed-
ded with exponential time-decaying factors in distributed
(multi-machines) setting; (b) provide practical implementa-
tions of our algorithm (FTRL-like algorithm) for parallelism
on both BSP [6] and SSP [13] consistency model in online
learning scenario; and (c) compare the performance on two
well-known platforms: (i) general big data analytic platform
(i.e., Spark [27]) for BSP model; and (ii) specific machine
learning platform (i.e., Petuum [33]) for SSP model. We
conclude some interesting results in the experiments and
hope that all practitioners get enlightened from it.

2.2 FTRL-Proximal Algorithm
In this subsection, we give the details of the FTRL-

proximal algorithm. We start with the optimization prob-
lem that the algorithm is proposed for. We first establish
some notations to be used in the following. We denote a
vector g(t) ∈ Rd, where t indicates the t-th training exam-

ples. The i-th entry in vector g(t) is defined as g
(t)
i , and

g(1:t) =
∑t
s=1 g(s). We use data and examples interchange-

ably if the context is clear.

Optimization problem. Given a time step T ≥ 1, a se-
quence of training examples with features x(t) ∈ Rd and
labels y(t), t ∈ [1, T], the optimization problem that FTRL-
proximal algorithm solved takes the form of

w(T) = arg min
w

{ T∑
t=1

L(w,x(t),y(t)) +R(w)
}
, (1)

in particular,

• w(T) ∈ Rd is the target model parameters to be com-
puted;

• L(, ,) is a convex loss function of the prediction func-
tion, e.g., least square loss in linear regression, or lo-
gistic loss in logistic regression; and

• R(w) is a convex regularization term, e.g., L1-norm,
L2-norm or a linear combination of both.

Model update function. To solve the optimization prob-
lem in Equation 1, at each iteration t ∈ [1, T], the FTRL-

proximal algorithm updates the model parameters iterative-
ly, i.e., w(t+1) takes the form of

arg min
w

{
g(1:t)·w+λ1‖w‖1+λ2‖w‖22+

1

2

t∑
s=1

σ(s)‖w−w(s)‖22
}
,

(2)
where

• g(t) ∈ Rd is a vector of gradients of loss function
L(w,x(t),y(t)) in Equation 1;

• (λ1‖w‖1 + λ2‖w‖22) is the regularization term corre-
sponding to R(w) in Equation 1; and

• 1
2

∑t
s=1 σ

(s)‖w − w(s)‖22 is a smoothing term, impor-
tantly, such smoothing term does not change the opti-
mum of the original problem in Equation 1, it aims to
speed up convergence and improve accuracy.

Moreover, the vector σ(t) is defined in terms of the
learning-rate schedule, i.e., σ(t) = 1

η(t)
− 1

η(t−1) , such

that σ(1:t) = 1

η(t)
. And η

(t)
i is a per-coordinate learning

rate proposed in [25] as,

η
(t)
i =

α√∑t
s=1(g

(s)
i)2

, (3)

where α is set as twice the maximum allowed magni-
tude for wi to give the best possible regret bound [25].

As reported in [25], the update function in Equation 2 can
be transformed into a recursive closed form, i.e., the value
w(t) can be recursively computed from w(t−1). An efficient
implementation with pseudocode is then provided based on
the recursive form. And better still, FTRL-proximal algo-
rithm outperforms the other classical online learning algo-
rithms (e.g., FOBOS and RDA) in terms of accuracy and
sparsity, Therefore, in this paper, we derive our techniques
from the FTRL-proximal algorithm. We consider a possible
intuitive modification to FTRL-proximal, that lets it adapt
faster to changes in data distribution.

2.3 Problem Definition
As motivated in Sec. 1, we want to tackle the data with

fast-changing nature for online learning scenario, which in-
dicates that the target model approaches to the most recent
model while older history of the model can be deemphasized.
Thus, we state the time-decaying online convex optimization
TOCO problem as below.

Definition 1: Given a time step T ≥ 1, a sequence of train-
ing examples with features x(t) and labels y(t), t ∈ [1, T],
the time-decaying online convex optimization, denoted as
TOCO, is stated as

w(T) = arg min
w

{ T∑
t=1

L(w,x(t),y(t))+R(w)+

T∑
t=1

F (T)(t)S(w,w(t))
}
.

(4)
2

The objective function in Equation 4 is similar to that
of Equation 1, except that we introduce an additional term
as
∑T
t=1 F

(T)(t)S(w,w(t)) to model the time decay of our

target model. More specifically, (a) F (T)(t) is a monotonic
increasing time-decay function (to be defined shortly) with

independent variable t, and (b) S(w,w(t)) is a smoothing

term, i.e., 1
2
‖w −w(t)‖22.

The intuition here is that with the help of time-decaying
function, the target model w(T) cannot differ too much com-
pared to those recent model, while the effects from older
history of the model can be decreased. Such corresponds to
the objective of our problem.

3. TIME-DECAYING ADAPTIVE PREDIC-
TION ALGORITHM

In order to solve TOCO problem, in this section, we
present the details of the proposed time-decaying adaptive
prediction (TDAP) algorithm. We first introduce the time-
decaying function. We then give a formal definition of the
model update function with recursive closed form. Details
of the algorithm are finally presented.

Time-Decaying function. We note that there are num-
bers of time-decaying function in the literature, such as poly-
nomial decay and exponential decay [7]. In this paper, we

use exponential decay function as F (T)(t) in Definition 1.
The reasons are two folds: (a) it is widely used in both in-
dustry [20, 31] and academia [5, 29]; and (b) the recursive
closed form of the model update function (to be seen short-
ly) can be derived under the exponential term 1.

In particular, the exponential time-decaying function
takes the form of

F (T)(t) = exp(−|T + 1− t|
(2τ)2

), (5)

where T ≥ 1 is current time step, and t is time step of the
history model, t ∈ [1, T]. Note that F (T)(t) is a monoton-
ic increasing function with independent variable t, i.e., the
larger the t, the larger the returned value.

Model update function. Based on the exponential decay
function in Equation 5, we define the iterative model update
function in each iteration t to solve TOCO, where w(t+1)

takes the form of

arg min
w

{
g(1:t)·w+λ1‖w‖1+λ2‖w‖22+

1

2

t∑
s=1

δ(s,t)‖w−w(s)‖22
}
.

(6)

Note that δ(s,t) = σ(s) · F (t)(s), which can be extended on
per-coordinate base as

δ
(s,t)
i = σ

(s)
i exp(− |t+1−s|

(2τ)2
)

= 1
α

(√∑s
j=1(g

(j)
i)2 −

√∑s−1
j=1(g

(j)
i)2

)
exp(− |t+1−s|

(2τ)2
)

(7)

We let γ = 1
(2τ)2

, then δ(s,t) = σ(s) exp(−γ(t + 1 − s)).

Here, γ > 0 is a decay rate, and the bigger the γ, the faster
decaying of the history model. It is easy to see that in case of
limτ→+∞ γ = 0, Equation 6 is equivalent to that of FTRL-
proximal algorithm in Equation 2.

It is worth highlighting that the update function for TDAP
algorithm differs from that of the FTRL-proximal algorithm
as we introduce the time-decaying factor to the smoothing
term, i.e., the quadratic term 1

2

∑t
s=1 δ

(s,t)‖w − w(s)‖22.

Closed form. Similar to FTRL-proximal algorithm, we
next derive a recursive closed form of the update function
in Equation 6 following the flow in [25].

1In this work, we take the first step to study the TOCO prob-
lem with exponential decay, other time-decaying functions
(e.g., polynomial decay) are refered to the future work.

Algorithm Per-Coordinate TDAP algorithm with L1 and L2

Regularization for Logistic Regression
Input: Parameters α, λ1, λ2 and γ

1. (∀i ∈ {1, · · · , d}), initialize u
(0)
i = v

(0)
i = δ

(0)
i = h

(0)
i = 0

2. for each t = 1 to T , do

/* features receiving */

3. receive feature vector x(t) and let I = {i|x(t)i 6= 0}

/* model parameters update */
4. for each i ∈ I, do

5. update w
(t)
i with closed form /* Equation 9 */

/* prediction */

6. predict p(t) = 1
1+exp(−x(t)·w(t))

/* logistic regression */

/* labels observation */

7. observe label y(t) ∈ {0, 1}

/* recursive form update for future model update */
8. for each i ∈ I, do

9. g
(t)
i = (p(t) − y(t))x(t)i /* gradient of loss w.r.t. w */

10. σ
(t)
i = 1

α
(

√
u
(t−1)
i + (gi(t))2 −

√
u
(t−1)
i) /* 1

η
(t)
i

− 1

η
(t−1)
i

*/

11. u
(t)
i = u

(t−1)
i + (g

(t)
i)2 /* sum of gradient */

12. δ
(t)
i = exp(−γ)(δ

(t−1)
i + σ

(t)
i) /* Equation 10 */

13. v
(t)
i = v

(t−1)
i + g

(t)
i /* sum of gradient square */

14. h
(t)
i = exp(−γ)(h

(t−1)
i + σ

(t)
i w

(t)
i) /* Equation 11 */

15. z
(t)
i = v

(t)
i − h

(t)
i /* Equation 12 */

Figure 2: TDAP Algorithm

We rewrite the Equation 6 w.r.t. the arg min over w as{
(g(1:t)−

t∑
s=1

δ(s,t)w(s))·w+λ1‖w‖1+
1

2
(λ2+

t∑
s=1

δ(s,t))·w2+(const)
}

(8)

By storing z(t) = g(1:t) −
∑t
s=1 δ

(s,t)w(s), one can solve

w(t+1) in a recursive closed form on a per-coordinate base
as follows,{

0 if |z(t)i | ≤ λ1

−(λ2 +
∑t
s=1 δ

(s,t)
i)−1(z

(t)
i − λ1sign(z

(t)
i)) if |z(t)i | > λ1

(9)
From Equation 9, in iteration t, we are required to store∑t
s=1 δ

(s,t)
i and z

(t)
i in memory only. However, how can we

update both values in t-th iteration with only the values of
(t − 1)-th iteration? Next, we focus on the recursive form

for updating both
∑t
s=1 δ

(s,t)
i and z

(t)
i .

Recursive form of
∑t
s=1 δ

(s,t)
i .

∑t
s=1 δ

(s,t)
i can be computed

in a recursive form:∑t
s=1 δ

(s,t)
i =

∑t
s=1

(
σ
(s)
i · exp

(
− γ(t+ 1− s)

))
= exp(−γ) · (

∑t−1
s=1 δ

(s,t−1)
i + σ

(t)
i)

(10)

Recursive form of z
(t)
i . Since z

(t)
i = g

(1:t)
i −

∑t
s=1 δ

(s,t)
i w

(s)
i ,

we let h
(t)
i =

∑t
s=1 δ

(s,t)
i w

(s)
i , h

(t)
i can then be computed in

a recursive form

h
(t)
i =

∑t
s=1 δ

(s,t)
i w

(s)
i

=
∑t
s=1 σ

(s)
i exp

(
− γ(t+ 1− s)

)
w

(s)
i

= exp(−γ)
(∑t−1

s=1(δ
(s,t−1)
i w

(s)
i) + σ

(t)
i w

(t)
i

)
= exp(−γ)(h

(t−1)
i + σ

(t)
i w

(t)
i)

(11)

Thus, the recursive form of z
(t)
i becomes

z
(t)
i = g

(1:t)
i −

∑t
s=1 δ

(s,t)
i w

(s)
i

= g
(1:t−1)
i + g

(t)
i − exp(−γ)(h

(t−1)
i + σ

(t)
i w

(t)
i)

(12)

Detailed algorithm. Putting all together, in iteration t,
from Equation 10 and 12, we note that our algorithm is

required to keep track of u
(t)
i , v

(t)
i , δ

(t)
i and h

(t)
i on per-

coordinate base only. We show the pseudocode of TDAP
algorithm using the example of logistic regression in Fig-
ure 2. The algorithm first initializes the parameters in
Line 1. Then, upon receiving the features (Lines 2-3) for
each iteration, TDAP updates the model parameters and
does the prediction (Lines 4-6). It then updates the param-
eters for further usage by observing the labels (Lines 7-15).

Advantages. It is worth remarking that (a) the effects of
older history models on target model are scaled down with
the help of time-decaying function, which leads to adapt
fast changes (gradual or abrupt) of data; (b) all examples
are used for model training while there is no need to record
them, which significantly saves the memory; and (c) it is
efficient to update the models due to the recursive closed
form, as shown in Section 5.

4. PARALLELISM OF TDAP
ALGORITHM

In this section, we show the parallelism of TDAP algo-
rithm. We first introduce the data model and the system
model. We then present the parallel TDAP under data par-
allel scheme with bulk synchronized parallel (BSP) consisten-
cy model, as TDAPBSP. We end this section by showing how
we can extend the TDAPBSP to stale synchronized parallel
(SSP) model, as TDAPSSP.

4.1 Data Model and System Model
Data model. We follow the data parallel [14] model in
online learning scenario. In particular, the data (examples
with features and labels) take the form of stream, which is

divided into a sequence of mini-batch D(t) in each iteration
t ∈ [1, T], |D(t)| ≥ 1. The mini-batch D(t) is then parti-
tioned and assigned to computational workers indexed by p
for further computations (to be seen shortly).

System model. The system model follows the state-of-
the-art parameter server paradigm e.g., [8,13,22], which are
widely used to tackle the large scale iterative machine learn-
ing problem [15, 18, 37]. It comprises of the following three
major components:

Driver. The driver is to initiate the algorithm and control
the parameters updates via parameter consistency controller
for each iteration t ∈ [1, T] under the bulk synchronized
parallel (BSP) or stale synchronized parallel (SSP).

Parameter servers. The parameter servers (PS) provide a
global access to model parameters via a parameter synchro-
nization interface like that of table-based or key-value stores.
Note that in practice, the PS can also be the driver.

Workers. Let P be all workers. For each iteration t, each
worker p ∈ P receives the model parameters from PS via the
parameter synchronization interface (i.e., pull()), and up-
dates the model locally in parallel using the received exam-

ples D
(t)
p partitioned by mini-batch D(t), i.e., D

(t)
p ⊂ D(t).

D(t)D(t+1)D(t+2)

Parameter
Synchronization Interface

Worker 1

Eval
p
BSP

Local
Parameters

Local Delta
Parameters

D
(t)
1

· · ·

Parameter
Synchronization Interface

Worker p

Local
Parameters

Local Delta
Parameters

D
(t)
p

Global Parameters

Parameter Servers (Driver)

Parameter

Controller

Eval
p
BSP

pull()push() local push() local

EvalPSBSP

Update local
parameters &

Update global

parameters &

by Eval
p
BSP

by EvalPSBSP

Data Stream
· · ·

1© 1©

2© pull()2©4© 4©

3©

5©

Consistency

Parameter
Synchronization

Interface

control the flow

predict

delta parameters global parameters delta parameters

Figure 3: Data model, system model and working flow

of TDAPBSP algorithm.

Note that each example in D(t) is allocated to one worker
only. After the update is done, the worker p then synchro-
nizes the newly updated model parameters to the PS via
the synchronization interface push(). The driver (or PS)
then generates future decisions.

Example 2: Figure 3 depicts an example of the data model
and system model. Three parties of the system, i.e., driver,
PS and workers are shown. For simplicity, here, the PS also
represents the driver. The examples coming to the system
take the form of a stream of mini-batch D(t) in each iteration
t. Collections of examples D

(t)
p ∈ D(t) are then sent to the

worker p for later computations. 2

4.2 Parallel TDAP Algorithm Under BSP
Data structure. We first introduce three types of data
structures that facilitate TDAPBSP.

Global parameters on PS. The global parameters are stored
in PS, which keep track of the global model states. In par-
ticular, in iteration t, the global parameters to be saved are

(u
(t)
i , v

(t)
i , h

(t)
i

′
, δ

(t)
i

′
) on per-coordinate base, where

• u(t)
i = u

(t−1)
i +

∑
p∈P

∑
d∈D(t)

p
(g

(t)
p,d,i)

2;

• v(t)i = v
(t−1)
i +

∑
p∈P

∑
d∈D(t)

p
g
(t)
p,d,i;

• h(t)
i

′
= h

(t−1)
i

′
+
∑
p∈P

∑
d∈D(t)

p
σ
(t)
p,d,iw

(t)
p,i; and

• δ(t)i
′

= δ
(t−1)
i

′
+
∑
p∈P

∑
d∈D(t)

p
σ
(t)
p,d,i.

Note that g
(t)
p,d,i (resp. σ

(t)
p,d,i and w

(t)
p,i) are gradient (resp.

learning-rate schedule and model parameter) with i-th co-

ordinate in t-th iteration computed under example d ∈ D(t)
p

at worker p. And h
(t)
i

′
and δ

(t)
i

′
do not introduce the time-

decaying factor, which are different to h
(t)
i and δ

(t)
i .

Local parameters at workers. Each worker p stores its lo-
cal parameters, which can be derived from global pa-
rameters on PS. Specifically, in iteration t, the local

Algorithm EvalpBSP
Input: A collection of examples D

(t)
p

/* receiving global parameters from PS */

1. pull(u
(t)
i , v

(t)
i , h

(t)
i

′
, δ

(t)
i

′
) on per-coordinate base

/* local parameters update */
2. for each coordinate i, do

3. u
(t)
p,i = u

(t)
i

4. v
(t)
p,i = v

(t)
i

5. h
(t)
p,i = exp(−γ)

(
h
(t−1)
p,i + (h

(t)
i

′
− h(t−1)

i

′
)
)

6. δ
(t)
p,i = exp(−γ)

(
δ
(t−1)
p,i + (δ

(t)
i

′
− δ(t−1)

i

′
)
)

7. store h
(t)
i

′
and δ

(t)
i

′
locally for next iteration

/* computing model parameters */
8. for each coordinate i, do

9. compute w
(t)
p,i with closed form /* Equation 9 */

10. for each d ∈ D(t)
p , where d = (x, y), do

/* prediction using model parameters */

11. predict p
(t)
p,d = 1

1+exp(−x·w(t)
p)

/* local delta parameters computation */
12. for each coordinate i, do

13. compute g
(t)
p,d,i and σ

(t)
p,d,i

14. ∆u
(t)
p,i = ∆u

(t)
p,i + (g

(t)
p,d,i)

2

15. ∆v
(t)
p,i = ∆v

(t)
p,i + g

(t)
p,d,i

16. ∆h
(t)
p,i

′
= ∆h

(t)
p,i

′
+ σ

(t)
p,d,iw

(t)
p,i

17. ∆δ
(t)
p,i

′
= ∆δ

(t)
p,i

′
+ σ

(t)
p,d,i

/* sending local delta parameters to PS */

18.push(∆u
(t)
p,i,∆v

(t)
p,i,∆h

(t)
p,i

′
,∆δ

(t)
p,i

′
) to PS

Figure 4: EvalpBSP at Worker p in iteration t

parameters to be saved at worker p take the form of

(u
(t)
p,i, v

(t)
p,i, h

(t)
p,i, h

(t−1)
i

′
, δ

(t)
p,i, δ

(t−1)
i

′
) on per-coordinate base,

where

• u(t)
p,i = u

(t)
i ;

• v(t)p,i = v
(t)
i ;

• h(t)
p,i = exp(−γ)(h

(t−1)
p,i +

∑
p′∈P

∑
d∈D(t)

p′
σ
(t)

p′,d,iw
(t)

p′,i);

and

• δ(t)p,i = exp(−γ)(δ
(t−1)
p,i +

∑
p′∈P

∑
d∈D(t)

p′
σ
(t)

p′,d,i).

It is worth highlighting that h
(t−1)
i

′
is recorded in order to

compute
∑
d∈D(t)

p′
σ
(t)

p′,d,iw
(t)

p′,i (to be seen shortly). Similar

for δ
(t−1)
i

′
.

Local delta parameters. Intuitively, for each worker p, it
computes the local delta parameters which is to incremen-
tally update the global parameters on PS. More specifical-
ly, the local delta parameters for work p in iteration t are

(∆u
(t)
p,i,∆v

(t)
p,i,∆h

(t)
p,i

′
,∆δ

(t)
p,i

′
) on per-coordinate base, where

• ∆u
(t)
p,i =

∑
d∈D(t)

p
(g

(t)
p,d,i)

2
;

• ∆v
(t)
p,i =

∑
d∈D(t)

p
g
(t)
p,d,i;

• ∆h
(t)
p,i

′
=
∑
d∈D(t)

p
σ
(t)
p,d,iw

(t)
p,i; and

Algorithm EvalPSBSP
Input: Local delta parameters from all workers

/* global parameters update */
1. for each worker p, do
2. for each coordinate i, do

3. u
(t)
i = u

(t)
i + ∆u

(t)
p,i

4. v
(t)
i = v

(t)
i + ∆v

(t)
p,i

5. h
(t)
i

′
= h

(t)
i

′
+ ∆h

(t)
p,i

′

6. δ
(t)
i

′
= δ

(t)
i

′
+ ∆δ

(t)
p,i

′

Figure 5: EvalPSBSP at PS in iteration t

• ∆δ
(t)
p,i

′
=
∑
d∈D(t)

p
σ
(t)
p,d,i.

TDAPBSP algorithm. We show the details of TDAPBSP us-
ing the logistic regression, which is controlled by a driv-
er function DriverBSP. DriverBSP initiates the TDAPBSP, and
triggers EvalpBSP (Figure 4) and EvalPSBSP (Figure 5) functions
in each iteration between workers and PS. All parameters
are updated iteratively under BSP model, no need to com-
pute from scratch.

In particular, all global parameters and local (delta) pa-
rameters are initiated as zero. Then given a collection of
examples in iteration t, each worker p computes the local
(delta) parameters by EvalpBSP, in parallel, based on the glob-
al parameters computed in previous iteration. The global
parameters are then updated by EvalPSBSP at PS using the
newly computed local delta parameters. DriverBSP termi-
nates the whole procedure manually, or until there is no
data coming.

EvalpBSP. Given a collection of examples D
(t)
p ⊂ D(t) in t-th

iteration at worker p, EvalpBSP first receives all global param-
eters from PS by pull() function (Line 1). It then updates
the local parameters and computes local delta parameters
iteratively, based on the parameters in (t − 1)-th iteration

(Lines 2-7). The model parameters w(t) are then construct-
ed using the newly updated local parameters, and the pre-
diction are conducted (Lines 8-11). EvalpBSP finally computes
the local delta parameters (Lines 12-17) and sends them to
PS by push() function for incrementally updating the global
parameters (Line 18).

EvalPSBSP. Upon receiving all local delta parameters from each

worker p in iteration t, EvalPSBSP increments global parameters
by summing up all those received local delta parameters.
The updated global parameters are used for next iteration
(Lines 1-6).

Example 3: Figure 3 illustrates the working flow of
TDAPBSP algorithm in t-th iteration given a mini-batch D(t).
All local and global parameters are recored in PS and work-
ers, respectively, which are initialized as zero.

Upon receiving a collection of examples D
(t)
p ⊂ D(t), the

worker p invokes EvalpBSP. It pulls the global parameters from
PS, and updates the local (delta) parameters accordingly.
The prediction are conducted based on the newly computed
model parameters. After the computations, EvalpBSP pushes
the local delta parameters to the PS.

Based on the local delta parameters received from al-
l workers (required by BSP consistency model), the PS then
invokes EvalPSBSP to augment the global parameters accord-
ingly. Afterwards, the PS (a.k.a. the Driver) then invokes
next iteration of the computation, or abort. 2

4.3 Parallel TDAP Algorithm Under SSP
The performance of TDAPBSP may be significantly ham-

pered by the stragglers in each iteration that may hold up
the process, such costs are inherent to the synchronization
policy of BSP. To reduce the costs, one possible solution is to
use asynchronous parallel strategy, however, no performance
guarantee is provided [33] in terms of correctness.

In this subsection, we introduce TDAP under SSP con-
sistency model [33], denoted as TDAPSSP, whose accuracy
can be theoretically preserved by [13]. Since TDAPSSP is
an extension from TDAPBSP, for presentation simplicity, we
avoid repeating the same details, but highlight the major
differences between two.

Data structure. We first present the difference on data
structure. The local delta parameters for TDAPSSP are the
same to those of TDAPBSP, while local and global parameters
involve more components, as described below.

Global parameters on PS. Besides the global parameters
used in TDAPBSP, TDAPSSP introduces two more types of
global parameters on PS: (a) The time step tp for each work-
er p, which encodes the latest time step that worker p syn-
chronizes (via push interface) its local delta parameters to
the PS; and (b) The minimum time step tPS for all workers
p, i.e., tPS = min{tp|∀p ∈ P}.
Local parameters at workers. At worker p, except for those
parameters in TDAPBSP, TDAPSSP requires to record (a) the
latest time step tp that the local parameters been updated;
and (b) the latest time step t(p,PS) that worker p synchro-
nizes global parameters (via pull interface) from PS.

TDAPSSP algorithm. Based on the newly introduced pa-
rameters, we are ready to show the algorithm. Similar to
TDAPBSP, TDAPSSP is also controlled by a driver DriverSSP,
which is for initialization and triggering EvalpSSP and EvalPSSSP
functions under the SSP consistency model. In particular,
compared to BSP, workers may compute advance ahead of
each other up to s iterations apart, where s is called stale-
ness threshold (in short stale), under SSP. Workers that go
too far away (s iterations faster than the slowest one) are
forced to wait, until slower workers catch up. Note that SSP
is equivalent to BSP when s = 0.

EvalpSSP. Given a collection of examples D
(t)
p , EvalpSSP first

checks whether the local parameters are delayed or stale, by
evaluating the value of (tp − tp,PS). (a) If (tp − tp,PS) > s
(i.e., local parameters at worker p are delayed at least s iter-
ations), EvalpSSP yields to synchronize global parameters from
PS via pull interface (like Line 1 in Figure 4) and conducts
the procedures that are the same to Lines 2-17. The time
step tp,PS is then updated as tPS , i.e., tp,PS = tPS , where
tPS is within those returned global parameters; (b) Other-
wise, no need to update the local parameters, EvalpSSP just
computes the local delta parameters, the same to Lines 12-
17 in Figure 4.

Note that the time step tp for worker p is incremented by
1 after the above procedure, and all local delta parameters
are then sent to PS via push interface, as Line 18 in Figure 4.

EvalPSSSP. Compared to EvalPSBSP, EvalPSSSP is invoked once re-
ceiving (a) the local delta parameters, or (b) a pull request
for global parameters, from a worker p.

• (a) Upon receiving the local delta parameters from
the worker p, EvalPSSSP conducts the update functions

as Lines 2-6 in Figure 5. The time step tp for worker
p is added by 1, and tPS is updated accordingly;

• (b) Otherwise, i.e., receiving a pull request for global
parameters from the worker p, EvalPSSSP is required to
evaluate the value of (tp − tPS). (a) If (tp − tPS) ≤
s, EvalPSSSP returns the global parameters directly; (b)
Otherwise, which implies that worker p runs too far
away, EvalpSSP has to wait until the slower workers catch

up. Once (tp − tPS) = s, EvalPSSSP proceeds the request
again and returns the global parameters.

5. EXPERIMENTAL STUDY
In this section, we experimentally study the perfor-

mance between FTRL-Proximal and TDAP using real-world
datasets. In short, we evaluate (a) the accuracy of TDAP;
(b) the scalability of TDAP; and (c) the efficiency between
TDAPSpark and TDAPPetuum. The results exhibit the algorith-
m with good accuracy, scalability and efficiency.

5.1 Experimental Setup
Datasets. We benchmarked 8 real-world datasets in total,
which can be classified into the following categories. Some
detailed statistics of the datasets are illustrated in Table 1.

Public non-time series datasets. We used 6 datasets with-
out time series, namely Books, DVD, Electronics, Kitchen,
RCV1 and News. Among them, Books, Dvd, Electronics
and Kitchen are first used in [4], representing Amazon prod-
uct reviews of four different product types. RCV1 and News
are scaled versions of rcv1.binary [21] and news20.binary [15]
datasets for binomial classification, respectively.

Public time series dataset. We used a public dataset with
time series on suspicious URLs detection, called URLs which
is available from [23]. It is an anonymized 120-day subsets
with around 2.4 million URLs detection records. Each day
contains about 6, 580 positives and 13, 223 negatives exam-
ples on average.

IPTV VoD time series dataset. We collected a dataset with
7-day IPTV VoD (Video On Demand) program (e.g., movies
and TV plays) views, named as IPTV, from a giant Telecom
company in Mainland China. It involves 72, 350, 479 view
records from 4, 446, 247 users.

To generate the examples, we construct a feature label
pair (x(t),y(t)) for each VoD program view record at time

t. In particular, x(t) is a sparse feature vector, with size of
1, 321, 393 (as shown in Table 1), encoding the characteris-
tics of both program and user, e.g., program information, us-
er properties, user behaviors and time stamp of user’s view.
The label y(t) is 1 if the program was viewed by the user at
least 20 minutes or half of the total length of the program;
and 0 otherwise.

Algorithm settings. We implemented the following al-
gorithms: (a) Algorithms on Spark 1.5.1 under BSP mod-
el: (i) FTRLProxSpark, the FTRL-Proximal algorithm [25],
where α, λ1 and λ2 are all set as 0.1 2; and (ii) TDAPSpark

of Sec. 3, where the settings for α, λ1, λ2 are taken from
FTRLProxSpark. The parameter γ is carefully chosen for dif-
ferent datasets (to been seen shortly); and (b) Algorithms on

2We have varied α, λ1 and λ2 from 0.0001 to 1 on all the
above datasets, and 0.1 brings the best accuracy on average.

Table 1: Statistics of the datasets

Dataset # of fea-
tures

of positive
examples

of negative
examples

Books 332,439 2,264 2,201
DVD 282,899 1,807 1,779
Electronics 235,796 2,857 2,824
Kitchen 205,664 2,954 2,991
RCV1 47,236 355,460 321,939
News 1,355,192 9,999 9,997
URLs 3,231,961 786,182 1,593,948
IPTV 1,321,393 32,869,901 39,480,578

Petuum 1.1 under SSP model 3 (i) FTRLProxPetuum; and (ii)
TDAPPetuum, the stale is set to 2 (as recommended in [33]),
other parameter settings are the same to those on Spark
(BSP).

Evaluation framework. We conducted the evaluation of
the algorithms using three different frameworks in terms of
different datasets, where the accuracy metrics used include
AUC (Area Under the ROC Curve) and AER [23] (Accu-
mulative Error Rate). Details are as below.

Framework for public non-time series datasets. The frame-
work is designed for public non-time series datasets, where
the size of mini-batch is set as one, i.e., once coming one
example, the framework conducts prediction and trains the
model. The metric, AUC, is calculated after all examples
have been traversed.

Framework for URLs dataset. We follow the evaluation
framework for URLs as [23], where each mini-batch consists
of one example, similar to the above framework. However,
the AUC for both FTRL-Proximal algorithm and TDAP are
very close, which approach to 0.999 (0.999214 for TDAP and
0.999057 for FTRL-Proximal), we thereby use AER instead.
The AER is then aggregated and reported in terms of days.

Framework for IPTV dataset. This framework, on the other
hand, performs prediction and updates the model on IPTV
over each mini-batch formed by time slot with 15 minutes,
which follows our business requirements. And still, the AUC
is then aggregated and compared in terms of days.

Distributed settings. To evaluate the accuracy of the al-
gorithms, we deployed all algorithms on a mini cluster with
p = 3 machines, each of which has 24 cores, 96GB mem-
ory and 18TB disk. To further study the scalability, we
deployed a cluster with p = 10 machines, where each is with
8 cores, 64GB memory and 500GB disk. Each experiment
is repeated 10 times and the average is reported.

5.2 Experimental Results
Parameter Choosing for TDAP. We first study the ac-
curacy of TDAP by varying the parameter γ, in order to
choose good γ for each dataset. We fix the parameters α,
λ1 and λ2 as mentioned above, for fair comparison.

Figure 6 shows the AUC on Kitchen dataset using
TDAPSpark. The x-axis is γ and y-axis represents the AUC.
In particular, by varying γ from 0.1 to 0.000001, the AUC of
TDAP becomes stable (approaching 94%) once γ > 0.0005,
and similar for TDAPPetuum. Hence, we determine γ = 0.0005

3We use Petuum for the implementation of SSP as it is not
known how to realize it under Spark.

for Kitchen. Note that we conducted the same sets of exper-
iments to determine the value of γ for other datasets (not
shown), which are used in later evaluations.

Figure 6: The AUC of TDAP by varying parameter γ on

Kitchen dataset using TDAPSpark; Similar for TDAPPetuum.

Accuracy Comparison Between FTRL-Proximal and
TDAP. After determining γ of TDAP for each dataset,
we are ready to compare its accuracy to FTRL-Proximal.
As the comparison between FTRLProxPetuum and TDAPPetuum

shows similar results, for space constraints, we only report
the results on FTRLProxSpark and TDAPSpark.

Accuracy on public non-time series datasets. Table 2 re-
ports the AUC comparison between FTRLProxSpark and
TDAPSpark on public non-time series datasets. We note that
TDAPSpark performs nearly the same as FTRLProxSpark on
Books, Dvd, Electronics, Kitchen and RCV1. However, for
News, TDAPSpark improves the accuracy by at most 12%.
The hypothesis held by FTRL-Proximal is that the effects
of all historical models are equivalent. Although this might
be suitable for most non-time series datasets, we still be-
lieve that, according to “no free lunch” theorem, treating
historical models differently can lead to better performance
in some datasets, e.g., News in our experiments.

Table 2: The AUC of TDAPSpark and FTRLProxSpark on
all public non-time series datasets. The best value
for each dataset is in bold.

Dataset FTRLProxSpark TDAPSpark

Books 0.8944 0.8914 (γ = 0.0005)
Dvd 0.8838 0.8792 (γ = 0.0005)
Electronics 0.9278 0.9249 (γ = 0.0005)
Kitchen 0.9448 0.9440 (γ = 0.0005)
RCV1 0.9904 0.9936 (γ = 0.05)
News 0.8885 0.9952 (γ = 0.1)

Accuracy on URLs dataset. Figure 7 shows the AER, i.e.,
the percentage of misclassified examples for all URLs en-
countered up to date, for TDAPSpark and FTRLProxSpark
on URLs. The x-axis is the number of days and y-
axis is the AER. From the figure, we find out that the
AER of TDAPSpark approaches 1.4%, which outperforms
FTRLProxSpark (AER with 1.6%) by 12.5% on average. It
is worth remarking that the AUC for both algorithms are
very close, both approach 0.999, and the value of TDAPSpark

increases 0.016% compared to that of FTRLProxSpark. Hence,
we only report the AER in this part.

Accuracy on IPTV dataset. Figure 8 shows the AUC on

Figure 7: The AER of TDAPSpark (with γ = 0.00001) and

FTRLProxSpark on URLs dataset.

IPTV time series dataset. Not surprisingly, the results show
that TDAPSpark outperforms FTRLProxSpark by around 5.6%
on average. Such indicates that our strategy to deempha-
size the effects of historical models in model training can
definitely improve the accuracy, when the data are changing
fast as motivated in Figure 1.

In our running production service, when we switched from
FTRL-Proximal to TDAP, TDAP significantly increased the
degree of user activity, i.e., there were approximately 5%
more users engaged and each user took 10% more time than
ever, due to the accuracy improvement compared to the for-
mer one. Such accordingly brought more revenue than the
existing one (using FTRL-Proximal) for our customers.

Figure 8: The AUC of TDAPSpark (γ = 0.0005) and

FTRLProxSpark on IPTV dataset.

Scalability of TDAP. As TDAP shows good accuracy, we
next verify its scalability. We conducted the experiments
on IPTV dataset by varying p ∈ [2, 10] using TDAPSpark and
TDAPPetuum, the results are shown in Figure 9.

As expected, TDAPPetuum shows an excellent scalability,
which achieves 4x speedup when p increases from 2 to 10.
However, TDAPSpark can only achieve 3x speedup, no matter
how we increase the machines, i.e.,TDAPPetuum enjoys better
scalability with more machines than TDAPSpark. The ma-
jor reasons are two folds: (a) SSP avoids the “blocking” of
stragglers in each BSP round, by setting the staleness (as
revealed in [13]); (b) Petuum uses fine-grained caching s-
trategies and distributed shared memory to further reduce

the costs of network communication [33], whereas Spark’s
RDD system performs caching at a coarser granularity [27]
and thus requires more communication.

Figure 9: Speed-Up of TDAPSpark and TDAPPetuum. The

higher the slope of curve, the better the scalability. Both

of them show good scalability, but TDAPPetuum is better.

Efficiency Comparison between TDAPSpark and
TDAPPetuum. We next focus on the efficiency comparison
between TDAPSpark and TDAPPetuum. Figure 10 shows the
training time of both algorithms under the same setting (us-
ing p = 3 machines). We highlight that the training time
of TDAPPetuum is at least 1/20 of that of TDAPSpark, which
is also exhibited in [33] due to the same reasons explained
above.

Still in our production service, we observed that Petu-
um can process approximately one order of magnitude more
users than Spark, with the same cluster setup, i.e., the
throughput of Petuum was at least 10 times larger than
that of Spark. Hence, TDAP on Spark was possible, but the
deployment was easier and more efficient using Petuum.

Figure 10: Training time (s) of TDAPSpark and TDAPPetuum.

Summary. We find the followings: (a) TDAP gives better
accuracy than FTRL-Proximal: TDAP improves 5.6% pre-
diction accuracy on average over our datasets; (b) TDAP
has good scalability: TDAPPetuum (resp. TDAPSpark) is 4 (re-
sp. 3) times faster when p increases from 2 to 10; and (c)
TDAPPetuum outperforms TDAPSpark in terms of efficiency:
TDAPPetuum runs at least 20 times faster than TDAPSpark.

6. CONCLUSIONS AND DISCUSSION
Conclusions. In this paper, we have defined time-decaying
online convex optimization TOCO problem, where the tar-
get model approaches to the most recent models while older
history of the models are deemphasized, to tackle the fast-
changing data. We have proposed a time-decaying adap-
tive prediction TDAP algorithm to solve TOCO problem,
where recursive closed forms of the model update functions
have been designed. To scale big data, we have parallelized
the TDAP algorithm under both BSP and SSP consistency
model. Using real-world datasets, we have experimentally
verified that TDAP achieves good accuracy, scalability and
efficiency, on both models. We further observe that TDAP
on Spark is possible, but it is easier and more efficient for
deployment on Petuum in practice.

Discussion. We note that the proof of regret bounds for
TDAP, as well as TDAPBSP and TDAPSSP, are not the focus
of this paper. We refer these to the future work.

7. REFERENCES
[1] A. Agarwal, O. Chapelle, M. Dud́ık, and J. Langford. A

reliable effective terascale linear learning system. JMLR,
15(1):1111–1133, 2014.

[2] D. Agarwal, B.-C. Chen, and P. Elango. Fast online
learning through offline initialization for time-sensitive
recommendation. In SIGKDD, pages 703–712, 2010.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems. In
PODS, 2002.

[4] D. M. Blitzer J and P. F. Biographies, bollywood,
boom-boxes and blenders: Domain adaptation for
sentiment classification. ACL, 7:440–447, 2007.

[5] H.-I. Choi and W. J. Williams. Improved time-frequency
representation of multicomponent signals using exponential
kernels. TSP, 37(6):862–871, 1989.

[6] T. H. Cormen and M. T. Goodrich. A bridging model for
parallel computation, communication, and i/o. CSUR,
28:208, 1996.

[7] S. V. S. D. Cormode, G. and B. Xu. Forward decay: A
practical time decay model for streaming systems. In
ICDE, pages 138–149, 2009.

[8] W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, and E. P.
Xing. High-performance distributed ml at scale through
parameter server consistency models. In AAAI, 2015.

[9] C. B. Do, Q. V. Le, and C.-S. Foo. Proximal regularization
for online and batch learning. In ICML, pages 257–264,
2009.

[10] J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual
averaging for distributed optimization: convergence
analysis and network scaling. Automatic control, IEEE
Transactions on, 57(3):592–606, 2012.

[11] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and
A. Bouchachia. A survey on concept drift adaptation. ACM
Computing Surveys, 46, 2014.

[12] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis.
Large-scale matrix factorization with distributed stochastic
gradient descent. In SIGKDD, pages 69–77, 2011.

[13] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons,
G. A. Gibson, G. Ganger, and E. P. Xing. More effective
distributed ml via a stale synchronous parallel parameter
server. In NIPS, pages 1223–1231, 2013.

[14] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from sequential
building blocks. In SIGOPS Review, volume 41, pages
59–72, 2007.

[15] S. S. Keerthi and D. D. A modified finite newton method

for fast solution of large scale linear svms. In JMLR,
volume 6, pages 341–361, 2005.

[16] R. Klinkenberg. Learning drifting concepts: Example
selection vs. example weighting. Intelligent Data Analysis,
8:281–300, 2004.

[17] I. Koychev. Gradual forgetting for adaptation to concept
drift. ECAI Workshop, 2000.

[18] A. Kyrola, D. Bickson, C. Guestrin, and J. K. Bradley.
Parallel coordinate descent for l1-regularized loss
minimization. In ICML, pages 321–328, 2011.

[19] J. Langford, L. Li, and T. Zhang. Sparse online learning via
truncated gradient. In NIPS, pages 905–912, 2009.

[20] K. B. Lee, J. Siegel, S. Webb, S. Leveque-Fort, M. Cole,
R. Jones, K. Dowling, M. Lever, and P. French. Application
of the stretched exponential function to fluorescence lifetime
imaging. Biophysical Journal, 81(3):1265–1274, 2001.

[21] R. T. G. e. a. Lewis D D, Yang Y. Rcv1: A new benchmark
collection for text categorization research. In JMLR,
volume 5, pages 361–397, 2004.

[22] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-Y.
Su. Scaling distributed machine learning with the
parameter server. In OSDI, pages 583–598, 2014.

[23] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker.
Identifying suspicious urls: an application of large-scale
online learning. In ICML, pages 681–688, 2009.

[24] H. B. McMahan. Follow-the-regularized-leader and mirror
descent: Equivalence theorems and l1 regularization. In
AISTATS, pages 525–533, 2011.

[25] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner,
J. Grady, L. Nie, T. Phillips, E. Davydov, D. Golovin, et al.
Ad click prediction: a view from the trenches. In SIGKDD,
pages 1222–1230, 2013.

[26] H. B. McMahan and M. Streeter. Adaptive bound
optimization for online convex optimization. COLT, 2010.

[27] X. Meng, J. Bradley, B. Yavuz, E. Sparks,
S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde,
S. Owen, et al. Mllib: Machine learning in apache spark.
arXiv preprint arXiv:1505.06807, 2015.

[28] T. Moon, L. Li, W. Chu, C. Liao, Z. Zheng, and Y. Chang.
Online learning for recency search ranking using real-time
user feedback. In CIKM, pages 1501–1504, 2010.

[29] S. Provencher. A fourier method for the analysis of
exponential decay curves. Biophysical journal, 16(1):27,
1976.

[30] Y. Singer and J. C. Duchi. Efficient learning using
forward-backward splitting. In NIPS, pages 495–503, 2009.

[31] W. Windig and B. Antalek. Direct exponential curve
resolution algorithm (decra): a novel application of the
generalized rank annihilation method for a single spectral
mixture data set with exponentially decaying contribution
profiles. Chemometrics and Intelligent Laboratory Systems,
37(2):241–254, 1997.

[32] L. Xiao. Dual averaging method for regularized stochastic
learning and online optimization. In NIPS, pages
2116–2124, 2009.

[33] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee,
X. Zheng, P. Xie, A. Kumar, and Y. Yu. Petuum: A new
platform for distributed machine learning on big data.
SIGKDD, 2015.

[34] Y. Zhang and M. I. Jordan. Splash: User-friendly
programming interface for parallelizing stochastic
algorithms. arXiv preprint arXiv:1506.07552, 2015.

[35] B. Zhao, L. Fei-Fei, and E. P. Xing. Online detection of
unusual events in videos via dynamic sparse coding. In
CVPR, pages 3313–3320, 2011.

[36] M. Zinkevich, J. Langford, and A. J. Smola. Slow learners
are fast. In NIPS, pages 2331–2339, 2009.

[37] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola.
Parallelized stochastic gradient descent. In NIPS, 2010.

