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ABSTRACT
Earmarks are legislative provisions that direct federal funds
to specific projects, circumventing the competitive grant-
making process of federal agencies. Identifying and cata-
loging earmarks is a tedious, time-consuming process carried
out by experts from public interest groups. In this paper,
we present a machine learning system for automatically ex-
tracting earmarks from congressional bills and reports. We
first describe a table-parsing algorithm for extracting budget
allocations from appropriations tables in congressional bills.
We then use machine learning classifiers to identify budget
allocations as earmarked objects with an out of sample ROC
AUC score of 0.89. Using this system, we construct the first
publicly available database of earmarks dating back to 1995.
Our machine learning approach adds transparency, accuracy
and speed to the congressional appropriations process.

1. INTRODUCTION
An earmark is a legislative provision that directs federal

funds to specific projects, circumventing the competitive
grant-making process of federal agencies. It has been dif-
ficult to study how earmarking has affected the legislative
process due to a lack of comprehensive and open data on
earmarks. In fact, earmarking is often considered “the best
known, most notorious, and most misunderstood aspect of
the congressional budgetary process” [14].

In the past, earmark datasets were created manually by
experts from governmental agencies, such as the Office of
Management and Budget (OMB) and public interest groups
such as Taxpayers for Common Sense, Washington Watch,
and Citizens Against Government Waste. Congress pro-
duces thousands of pages of legal text each year, making the
process time-consuming and expensive. As a result, past ef-
forts were limited to short time spans and a limited set of
documents. A further issue, is that each of these groups had
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different definitions, motivations, and processes for identify-
ing and cataloging earmarks.

Given the significant changes in American politics in the
last 20 years, e.g. increased polarization, changes to cam-
paign financing, and a recent ban on earmarks [3, 6], datasets
with short-term coverage are inadequate for political scien-
tists to draw robust policy conclusions. A consistent, histor-
ically complete dataset has the potential to reveal valuable
insights on effective governance and answer questions such
as: “How instrumental is earmarking to passing controver-
sial legislation?”; “What effect does securing earmarks have
on campaign financing and reelection?”; or “Does being a
chair of congressional subcommittee affect how funds are
appropriated to the legislator‘s state or district?”

In this paper, we present a machine learning system for
automatically extracting earmarks from congressional bills
and reports. This approach allows us to cheaply, reliably,
and consistently extract earmarks from historical congres-
sional documents. Furthermore, the method is transparent
and reproducible, enabling analysts to easily understand,
evaluate, and build on our work [7]. Using our system, we
construct the first publicly available database of earmarks
dating back to 1995.

The dataset is already being used by Harris School of
Public Policy researchers of the University of Chicago to do
public policy research and analysis. In addition, it is being
promoted by both the Center for Data Science and Public
Policy, also of the University of Chicago, as well as the Sun-
light Foundation to researchers and practitioners interested
in government transparency and public policy.

2. SYSTEM OVERVIEW
An overview of the entire system is depicted in Figure 1.

The ultimate goal is to be able to take a document, extract
all the potential budget allocations that occur in the doc-
ument, and finally classify which allocations are earmarks.
Extracting potential budget allocations involves identifying
tables in the document that contain budget allocations and
parsing them into rows, where each row is a separate al-
location. This process is described in Section 4. Building
a classifier for determining which allocations are earmarks
requires a labeled set of allocations. We generate a corpus
of labeled allocations by matching the extracted allocations
to an earmark dataset compiled by the Office of Manage-
ment and Budget (OMB) in the late 2000s (see Section 5.1).
Our method for labeling earmarks involves a combination
of hand-labeling and machine learning and is discussed in



Figure 1: System overview.

Section 5. Given this labeled set of annotations, we train an
earmark detection classifier as described in Section 6. Fi-
nally, we run our earmark classifier on all congressional bills
and reports going back to 1995 and show some preliminary
analysis in Section 7.

3. THE BUDGET PROCESS
As many readers may not be familiar with the congres-

sional budgetary process and how earmarking occurs, we
provide a brief overview.

At the beginning of each fiscal year, the President submits
a proposal for the year’s budget to Congress. The budget
proposes funding levels for the various government entities
and broadly outlines spending limits and revenue expecta-
tions for at least the next five years. Next, the House and
Senate budget committees review the President’s proposal
and pass a budget resolution.

Mandatory spending and interest payments account for
the majority of federal spending [2]. The House and Senate
appropriations committees divide what remains in the bud-
get resolution to their twelve sub-committees. The twelve
sub-committees then write the bills that authorize discre-
tionary spending, and each of those bills becomes a law
if approved by each chamber and signed by the President.
Congress combines those bills into a single omnibus bill and
votes on it.

Earmarks can enter at almost any point of the process.
Senators and representatives can insert earmarks into the
text of appropriations bills, including supplemental appro-
priations and continuing resolutions [15]. they can place ear-
marks in the explanatory report attached to the bill. They
can also contact bureaucrats directly.

As the budget process has changed over time, so has the
placement of earmarks: “During the 19th century, earmarks
were often placed in the law. But after the adoption of the
Budget and Accounting Act of 1921, most earmarks were in-
cluded in legislative reports” [8]. Congress officially banned
earmarks in 2010, but members have continued to request
and receive them [9, 4]. Senators and representatives have
increasingly turned to calling and writing federal agencies
directly [10].

4. ALLOCATION EXTRACTION
The first step to identifying earmarks is to extract appro-

priations found in congressional bills and reports. We fo-
cus on extracting allocations mentioned within tables, where

Figure 2: Examples of dashed and dotted tables.

85% of the earmarks occur (see Sec. 5.4). Future work will
identify earmarks in free text to increase the coverage of our
dataset.

Several approaches to table parsing have been developed
in the field of information retrieval. Pyreddy et al. ex-
ploit table layout in text documents and develop a character
alignment graph (CAG) that uses heuristic methods to iden-
tify tables within documents [13]. They identify sections of
tables within documents. Pinto et al. extend the CAG to
extract individual cells from tables [11]. Our initial analyses
found that many tables shared similar attributes. We thus
employ a heuristic based approach described in the following
section.

4.1 Table Identification
The Government Printing Office (GPO) provides congres-

sional bills and reports as plain text files where tables ap-
pear as blocks of formatted text. Indentation, white space,
and dots and dashes are used to format tables. We first
segment a document into paragraphs, where paragraphs are
separated by two new line characters or more. Then each
paragraph is classified as a table or free text. A paragraph
is labeled as a table if the percentage of rows satisfying any
of the following conditions exceeds a threshold:

• It has numeric characters and three consecutive dots,

• It has numeric characters and at least two consecutive
spaces, or

• It has at least three consecutive dashes.

The threshold was set empirically to 0.3. In the exper-
iments section (5.6), we show that this heuristic retrieved
more than 98% of the tables in congressional reports and
bills.

Furthermore, tables in Congressional bills and reports can
be categorized into two main types: dotted tables and dashed
tables. Dashed tables use lines of all dashes to separate rows
and whitespaces to separate columns. Dotted tables do not
have special lines separating rows: each line is a row or
part of a multi-line row, and columns are separated by dots
and whitespace. See Figure 2 for examples. We distinguish
these two classes of tables because parsing each type requires
different rules and heuristics.

4.2 Table Header Detection
Parsing a one-line table header requires splitting on two

or more white spaces. In the case where headers span mul-
tiple lines, we introduce an algorithm that clusters words
in the header based on their vertical overlap. The simple
idea is that two words on two consecutive lines that inter-
sect vertically belong to the same header. First, each line
is split into cells by two or more consecutive white spaces.



Each cell in every row is represented as a four-dimensional
tuple (text, line, begin, end), where text is the clean text of
the cell, line is the line number, begin is the offset within
the line at which the text begins, and end is the last index
within the line at which the cell ends. The tuples are fed into
a clustering algorithm 1 to detect headers. The algorithm
returns the list of headers of the table.

Algorithm 1: Header Identification Algorithm

input : List of cell tuples Cells
output: Table Headers
Sorted = Sort(Cells, key = begin);
Clusters←− List;
C ←− List;
Add Sorted[0] to C;
Add C to Clusters;
for i = 1; i < length(Sorted); i + + do

word←− Sorted[i];
prev word←− Sorted[i− 1];
if word.begin < prev word.end then

Add word to Clusters[−1];
else

C ←− List;
Add word to C;
Add C to Clusters;

end

end
Headers←− List;
for C ∈ Clusters do

header = Sort(C, key = line);
Add concat(header) to Headers;

end
return Headers;

4.3 Column Detection
Tables are treated as a collection of columns where each

column divides rows into multiple cells. The idea behind
detecting column dividers is that column boundaries do not
contain any text. Instead, they consist of whitespace or
other delimiting characters across all the rows. That is, a
column divider is a pair of begin and end positions such that
only whitespace is observed within this span for all the lines
in the table. Algorithm 2 shows how these tuples are found.
In the following section, we discuss how multiline rows are
detected and merged.

4.4 Multiline Row Merging
Each line is initially treated as a separate row in the table.

Because rows can span multiple lines, we develop heuristics
to detect multiline rows and merge the related lines. For
dashes tables, identifying multiline rows is trivial because
rows are separated by a line of dashes. For dotted tables,
things are more involved. The basic concept is that all valid
table rows need to have a money allocation in one of their as-
sociated lines. This is guaranteed by our table-identification
heuristic described earlier. In the case of multiline rows,
money allocations can appear either in the first or the last
line. Fortunately, the position of the allocation tends to
be consistent within a table, which makes it easy to group
multiline rows. This heuristic is shown to provide accurate
extraction in the experiments section.

Algorithm 2: Column Identification Algorithm

input : List of table rows Rows
p←− get white space positions(Rows[0]);
for row ∈ Rows do

p←− p ∩ get white space positions(row);
end
indices←− Sort(p);
dividers←− list;
if length(indices) = 0 then

Add (0, length(Rows[0])) to dividers;
else

i←− 1;
begin←− indices[0];
prev ←− indices[0];
while i < length(indices) do

if indices[i]− prev = 1 then
prev ←− indices[i];

else
Add (begin, prev) to dividers;
begin←− indices[i];
prev ←− indices[i];

end
i←− i + 1;

end

end
return dividers;

4.5 Table Parsing Evaluation
To evaluate the the accuracy of our table-identification

methodology, we randomly selected 40 documents and tagged
all 384 tables in those documents. On this subset, our table-
identification heuristic recalled 98.6% of all of true tables,
while 89.2% of the predicted tables were true tables. For the
table identification task, we value recall higher than preci-
sion because an earmark missed in this step will never be
recovered and rows that are not allocations can be weeded
out later. To evaluate the column-identification and row-
merging algorithms, we randomly chose 30 tables from those
40 documents. We correctly identified columns and rows in
all 30.

5. ALLOCATION LABELING
The output of the table parsing algorithm, described in

Sec. 4, is a collection of tables that are neatly parsed into
rows and columns. Each non-header row in an allocation
table describes an allocation and is a potential earmark.
Eventually, we want to take a supervised learning approach
to building a model to classify allocations as earmarks. This
approach, however, requires labeling a set of allocations as
earmarks or just regular appropriations.

In this section, we describe how we use a corpus of ear-
marks from the Office of Management and Budget (OMB),
described in Sec. 5.1, to generate a labeled set of alloca-
tions. In particular, we attempt to match each earmark in
the OMB dataset to a corresponding allocation. In order
to perform this matching task at scale, we first match a
subset by hand (Sec. 5.4) and then train a classifier to pre-
dict whether a budget allocation matches an earmark in the
OMB dataset (Sec. 5.5 and Sec. 5.6).



5.1 OMB Data
In 2007, the OMB ordered all departments and agencies

to identify and catalog earmarks that appeared in appropri-
ations and authorization bills and reports for 2005. Over
the course of three months, those departments and agencies
sent the OMB congressional funding data. The OMB used
this to compile a list of congressional earmarks [12]. This
process was repeated in 2008, 2009, and 2010. The OMB
posted all the data in CSV format on its website.1

For each earmark, the OMB may provide the following:

• The congressional documents it appeared in,

• An excerpt from each of those documents,

• A short description,

• A long description, and

• The recipient of the funds.

See Table 1 for an example OMB record.

Documents Congress 111, House Bill 3293
Excerpt ...of which $13,455,000 shall be used for

the projects, and in the amounts, spec-
ified under the heading ‘Disease Con-
trol, Research, and Training’ in the re-
port of the Committee on Appropria-
tions of the House of Representatives
to accompany this Act

Short Desc. Dillard, University, New Orleans, LA
for facilities and equipment

Full Desc. NA
Recipient NA

Table 1: Sample OMB Record.

5.2 Resolving OMB document references
The first step in matching OMB records to allocations

is to map each document cited in the OMB corpus to a
congressional document2. Unfortunately, there is no unique
government document ID, which would make linking trivial.
Instead, the OMB references the documents in which an
earmark appears in myriad ways, such as specifying a bill
number, a report number accompanying a bill, a public law,
or a common name for a bill. Table 2 lists typical examples
of references. Table 3 describes how references are resolved
for OMB data from 2008. The heuristics for the other years
are similar.

Earmark ID Citation Reference
340045 H. Rept. 110-434
235530 P.L. 110-161
235531 Joint Explanatory Statement to accom-

pany H.R. 2764

Table 2: Examples of OMB document references.

1http://earmarks.omb.gov/earmarks-public/
2We use the Government Printing Office (GPO) as our
source of congressional texts.

Citation
Reference

Earmark Document

H.Rept.
XXX-YYY;
S.Rept.
XXX-YYY

Mapped to the latest House Report in
the XXX Congress that goes to the
YYY report; mapping is similar for the
Senate

H.R. XXX;
S.XXX

Mapped to the latest version of the
House or Senate bills of the XXX num-
ber in a given Congress and all of the
accompanying reports to those bills

P.L. XXX-
YYY

Public Laws are bills signed into law
by the president of the U.S. We find
the latest house version of the law and
map it to the bills and all of the relevant
documents.

Joint Ex-
planatory
Statements

These documents are treated as con-
gressional reports to the bill they are
attached to. We map them to those re-
ports accordingly.

Table 3: OMB reference resolution for 2008.

5.3 Matching OMB Records to Allocations
After linking OMB document references to documents in

our corpus of congressional texts, we used fields from an
OMB record to link OMB records with allocations extracted
from the corpus. For example, consider the OMB record in
Table 1 and a table extracted from the cited document in
Figure 3.

Figure 3: An allocation table.

If an earmark occurs in a table, the OMB does not actu-
ally cite the text of the table row the earmark appears in.
Instead, they cite part of a bill, which alludes to the fact
that an allocation is specified in a report accompanying the
bill. This is the case in the example given in Table 1. Even
when the excerpt is taken from the report containing the
earmark, it will cite the section of the report that alludes to
a table which contains the earmark; for example,

Provided further, That within the amounts ap-
propriated, $3,715,000 shall be used for the projects,
and in the amounts, specified in the table titled
“Congressionally-designated items” in the report
of the Committee on Appropriations of the House
of Representatives to accompany this Act. (Page
4 of HR bill 2847)

Thus, the excerpt is of little use in matching the table rows.
It would, however, directly provide labels for earmarks that



occur in plain text. As a result, we need to use the recipient
and description fields for matching. In the example above,
there is a perfect string match between the short descrip-
tion and the table cell corresponding to the 11th row of the
project column. In general, the short description could be
the concatenation of multiple table cells, a single table cell
could be the concatenation of the short description and the
full description, the description could be a permutation of
entities in the table cell text, or the descriptions could con-
tain abbreviations and misspellings of entities in the table
cell text.

The matching task is even more complicated when recipi-
ents and descriptions are not unique within a document. A
recipient can receive multiple earmarks within the same doc-
ument, and multiple recipients can receive earmarks for the
same purpose (e.g. “for equipment and facilities”). Further-
more, the same recipient can receive funding for the same
purpose in multiple table rows within the same document.
This means there is a one-to-many relationship between an
earmark record from the OMB and table rows in a docu-
ment.

Our matching evaluation works as follows. The matching
algorithm is perfect if it matches a row for the earmarked
appropriation in the document to its OMB record.

Consider a table row that represents an earmark. It will
be incorrectly labeled negative if it does not get matched to
a record from OMB either because the record is missing or
because the matching was done incorrectly. It will correctly
receive a positive label if it matches with a record from the
OMB. Note that even if it was matched with the wrong
OMB record, it would still be correctly labeled. So if we
do matching for the purpose of labeling only, then for the
algorithm to perfectly label the table rows, it must only
match every table row that represents an earmark to some
earmark.

Let’s now consider a row that does not represent an ear-
mark. It will correctly receive a negative label if it does not
get matched with a record from OMB. It will be incorrectly
labeled positive if it matches with a record from OMB, ei-
ther because the matching was done incorrectly or because
the OMB contained a record that is not really an earmark.

For the purposes of this paper, we treat the database from
OMB as definitional. We do not exert our own judgment
in adding or removing earmarks from their records. We
attempt to get the best labels we can by building the best
matching algorithm that we can.

As mentioned above, multiple table rows can map to the
same OMB record and mapping two OMB records to the
same table row does not necessarily imply a labeling error.
Because there are no clear constraints on the mapping from
OMB records to table rows, we treat the matching problem
as a simple classification problem.

5.4 Learning to Match: Training Data
As mentioned above, our goal is to build a classifier that,

given an OMB record and a table row, predicts whether they
match. We generated a training set to train this matching
classifier in a semi-manual fashion. We first take an OMB
record r and extract the set of documents Dr in which r oc-
curs. Then for each document dr ∈ Dr, we compute a simi-
larity score SIM(tdr , r) between every table row tdr and r.
The similarity score is the maximum of the Jaccard similar-
ities between the bigrams in tr and the bigrams in r’s short

description r.sd, full description r.fd and recipient r.rec. For
convenience lets define Fr = {r.sd, r.fd, r.rec}

JS(t1, t2) =
|bigrams(t1) ∩ bigrams(t2)|
|bigrams(t1) ∪ bigrams(t2)| (1)

SIM(tdr , r) = max
fr∈Fr

JS(tdr , fr) (2)

Within each document, pairs of the OMB record and the
table rows are ranked according to the similarity score SIM .
We then looked at the top 20 pairs and hand label them as
being a match or not. All other pairs are automatically
labeled as not matching. Table 4 gives an example of de-
scriptions from an OMB record and the five most similar
table rows. Cells within the table are separated by the |
symbol and are removed before computing similarities.

Short
Desc

Trimble Local School District, Glouster, OH
for an after-school program

Full
Desc

NA

1 Trimble Local School District, Glouster, OH
for an after-school program

2 Elementary and Secondary Education (in-
cludes FIE) | Trimble Local School District,
Glouster, OH for an after-school program |
Space

3 YMCA of Warren, Warren, OH for an after-
school program

4 City of Newark, CA for an after-school pro-
gram

5 Memphis City Schools, Memphis, TN for an
after-school program

Table 4: Descriptions from an OMB record along with the
top 5 most similar rows defined by SIM .

In this example, the earmark occurs in two tables within
the same document, and the two corresponding rows are
ranked highest. The other rows are also earmarks for after-
school programs, but they are for different districts or or-
ganizations. We applied this labeling procedure to 516 ran-
domly selected OMB records and found at least one match-
ing table row 438 times, thereby giving 85% as an estimated
lower bound of earmarks in tables. Because the OMB may
cite multiple documents for every record, there were 840
cases in which we tried to match a record to a table row
within a specific document, and we found at least one match-
ing row 534 times. There are at least seven possible reasons
an OMB record is not matched with a table row within a
document that the OMB cites. For each error, assume the
previous errors where not made:

1. The document is actually a bill that cites a report
which contains the earmark.

2. The document is a public law or resolution; we do not
include these documents in our analysis.

3. The citation was parsed incorrectly; we are looking in
the wrong document.

4. The earmark does not appear in a table but in plain
text.



5. The table was not parsed correctly, so the matching
row is not available.

6. The matching row did not appear in the top 20.

7. The matching row was hand-labeled as not matching.

Although one might like to find every occurrence of every
earmark, we are most concerned with finding every earmark
at least once. The only issue is that if we fail to identify
an earmark in a correctly parsed table, we would have an
incorrectly labeled table row. This can only happen if errors
1-5 are not made and either error 6 or error 7 seven is made.
If our matching algorithm is as good as the gold-standard
human labels and the statistics above generalize, then we
can estimate the upper bound of incorrectly labeled rows.
We extracted 530k table rows and the OMB gives 122k oc-
currences of earmarks. In the worst case, where errors 1-5
are never made, we would have 8.4% of data mislabeled.

5.5 Learning to Match: Features
In this section, we describe the feature sets we designed

for the matching task. Features are computed over pairs of
table rows and OMB record pairs. For ease of notation, fix
the OMB record r as well as the document dr it appears in.
Let T be the set of table rows t in dr. Let F be defined
as above as the set containing the short description, full de-
scription, and recipient texts from r. Let Ct be the set of
table cells in table row t.

Jaccard Similarity Features:
Jaccard similarity between the table row and each field of
the OMB record:

JS(t, f) for f ∈ F (3)

Maximum similarity between the table row and each field of
the OMB record:

max
fr∈Fr

JS(t, fr) (4)

Maximum Jaccard similarity between a field of an OMB
record and each cell in the table row for each field of the
OMB record:

max
ct∈Ct

JS(ct, fr) forfr ∈ Fr (5)

Maximum Jaccard similarity between all pairs of cells in the
table row and fields of the OMB record:

max
(c,f)∈CxF

JS(c, f) (6)

Relative Performance Features:
For any of the similarity features above, one can compare
similarity scores for pairs of table rows and a particular OMB
record within a document. A simple way to do this is to take
the difference in similarity feature scores between a particu-
lar pair and the highest scoring pair. Alternatively, one can
find the rank of a pair in the list of all pairs of table rows and
a specific OMB record, where the order is determined by a
similarity feature score. Here is an example of a difference
feature:

SIM(t, r)−max
t′∈T

SIM(t′, r) (7)

Because the classification task is really a matching task, a
particular OMB record will usually have only one matching

table row per document. Providing information about how
similar a table row is to an OMB record compared to others
provides a way of normalizing similarity scores within the
context of a particular OMB record and document.

5.6 Learning to Match: Experiments
As mentioned, the hand-labeling procedure was applied

to 516 OMB records. It resulted in 769 matching pairs
of OMB records and table rows and 647,157 non-matching
pairs. There can be more matching pairs than OMB records
because in some reports the same earmark can occur in two
tables, resulting in two matches for a single record.

Out of the matching pairs, the lowest SIM score observed
was 0.077. To reduce the number of negative examples, we
only include pairs with SIM scores greater than 0.05. This
reduced the number of negative instances to 32,715. One
can think of this threshold as a high-recall, low-precision
filter. Correspondingly, when we use the model to match
all remaining pairs beyond the ones that were hand labeled,
we compute SIM and label the pair negative if the value is
less than 0.05. If the score is greater than 0.05, we use the
model to label the pair. We present the result of our SVM
classifier in Table 5. Varying the weight parameter on the
sum of the slack variables in the SVM objective function in
the range [0.001, 100] did not change performance.

Mean Value (se)
AUC 0.9966 (0.08)

Precision: non-matching pairs 0.9203, (4.19)
Precision: matching pairs 0.9955, (0.26)
Recall: non-matching pairs 0.9373, (1.52)
Recall: matching pairs 0.9961, (0.12)
F-Score: non-matching pairs 0.9961, (0.12)
F-Score: matching pairs 0.9280, (2.02)

Table 5: Average Precision, Recall and F1 scores computed
via 5 fold cross-validation.

To evaluate the quality of our features, we train a model
using all the features described above as well as training a
model on just the Jaccard similarity features, just the rank-
ing features, and just the difference features. Figure 4 shows
an ROC curve for each set of features. The ranking features
are the best individual feature set, but including the dif-
ference features and the Jaccard similarity features gives a
small but significant increase in the ROC AUC. The results
show our algorithm can perform the matching task almost
as well as an expert human annotator.

We applied the matching algorithm to all OMB records.
For every OMB record r and for every document d referenced
by r, we computed the features described above over pairs
of table rows in d and r and record whether the matching
algorithm predicts a match for each pair. Table 6 shows the
number of OMB records, the number of OMB records that
have at least one matching table row, and the percentage of
OMB records that have at least one matching table row by
year. The results for 2005 are dramatically worse, which we
traced back to errors in linking documents in our corpus to
documents that the OMB cites for earmarks in 2005.



Figure 4: ROC curves for each feature set.

Enacted Year OMB Records Distinct % Matched
2010 9785 9280 94.8 %
2009 11577 9181 79.8 %
2008 11503 10919 94.9 %
2005 14977 7624 50.1%

Table 6: Annual matching performance on OMB data.

6. EARMARK CLASSIFICATION
Given the labels on table rows induced by matching, we

build a classifier that takes as input features computed over
the table row and predicts earmark characteristics.

6.1 Earmark Classification Features
We compute four broad categories of features for the ear-

mark classification task, which include geographic features,
sponsor features, unigrams, and simple string heuristics.

Geo Features: presence of a city, presence of a county, and
presence of a state

Sponsor Features: presence of a senator’s last name and
presence of a representative’s last name

Unigrams: indicator variables for all unigrams in the train-
ing data except states, cities, counties, and last names of
members of Congress.

Simple Heuristic Features:

• number of tokens

• number and percentage of tokens that are numbers

• number of percentage of tokens that are words

• number and percentage of characters that are of dots

• percentage of characters capitalized

6.2 Earmark Classification Experiments
To measure the generalization performance of our earmark

classifier over time, we would like to train on documents
from one year and test on documents from another. This

is complicated by the fact that an earmark can occur in a
document from the year it was enacted or the previous year.
For example, when looking at the documents that the OMB
references for earmarks enacted in 2009, we find that 3786
references are from documents dating from 2008 and 8500
references are dating from 2009. When grouping documents
by year, we cannot use documents from 2010 since they could
contain earmarks enacted in 2011, for which there is no OMB
data. Our labeling policy is that an allocation is labeled as
an earmark if and only if it matches an OMB record. Hence,
we will mislabel all earmarks enacted in 2011, leading to
poor training data and a poor classifier. We can however,
use documents from 2008 and 2009.

Table 7 shows the results of training an SVM on the fea-
tures described above. We are most interested in measuring
how a model trained on one year performs on prior years,
since most of the OMB data we need to fill in is from be-
fore 2008. We report cross-validated metrics for a model
tuned and trained on 2009 documents. We also report the
metrics for the 2009 model applied to documents from 2008.
As a reference point for the generalization performance, we
also include cross-validated metrics for a model tuned and
trained on 2008 documents.

CV 2009 CV 2008 Train: 2009
Test: 2008

Precision 0.74 (0.017) 0.85 (0.014) 0.72
Recall 0.71 (0.042) 0.87 (0.017) 0.48
F-Score 0.72 (0.016) 0.86 (0.007) 0.58
ROC 0.93 (0.001) 0.97 (0.002) 0.91

Table 7: Metrics for documents grouped by document year.

The data suggest that if a document contains OMB ear-
marks, they were all enacted in the same year. Hence, we
can assign an enacted year to those documents referenced by
OMB earmarks. This allows us to group documents by the
inferred enacted year and assign negative examples to the
enacted year of the document they are in. This approach
leaves out documents that are not referenced by any OMB
records. Hence we may lose negative examples from omit-
ted documents. The advantage is that we can increase our
dataset by using documents enacted in 2008, 2009 and 2010.
Table 8 shows results analogous to table 7.

CV 10/09 CV 2008 Train:10/09
Test: 2008

Precision 0.92(0.012) 0.90 (0.005) 0.87
Recall 0.93 (0.042) 0.93 (0.014) 0.84
F-Score 0.92 (0.016) 0.92 (0.005) 0.85
ROC 0.96 (0.004) 0.94 (0.004) 0.89

Table 8: Metrics for document grouped by enacted year.

Although there appears to be little difference in results
between the two grouping approaches as measured by the
area under the ROC curve, grouping by enacted year gives
a much better F1. In both cases, cross-validation overes-
timates the generalization error, suggesting that locations,
entities, and sponsors indicative of earmarks vary from year
to year.

To evaluate the quality of our features, we train a model
using all the features described above as well as training a



Figure 5: ROC curves for each feature set, trained on doc-
uments enacted in 2010 and 2009 and tested on documents
enacted in 2008.

model on each set individually. Figure 5 shows an ROC
curve for each feature set for a model trained on data en-
acted in 2009 and 2010 and tested on data enacted in 2008.
Unigrams are the most powerful feature set, followed by the
set of simple string heuristics.

7. A NEW EARMARKS DATASET
After retraining our model on all years, we applied our sys-

tem, to documents going back to 1995. For each extracted
allocation, we include:

Earmark Confidence Score: The score is the signed dis-
tance of the candidate earmark from the SVM margin. Pos-
itive scores reflect allocations predicted to be earmarks. The
magnitude of the score corresponds to confidence in the pre-
diction.

Allocation Location: We used OpenCalais, an off-the-
shelf named-entity recognizer (NER), to geotag allocations.
We obtained state-level locations for at least 85% of the ear-
marks and district-level associations for nearly 45% of the
earmarks. Future work will include more sophisticated geo-
tagging based on the location of entities mentioned in the
text.

Allocation Topic: The original OMB data includes the
spending committee associated with each earmark, such as
Agriculture, Commerce, Education, Energy and Water, etc.
We trained a spending committee classifier on the OMB data
using a Softmax Regression. Before training, we collapsed
spending committees related to Homeland Security, Military
and Veterans Affairs, and Defense into a single category: De-
fense and Military Affairs. The average of the out-of-sample
precision and recall scores for each class was approximately
85%. Using this classifier, we assigned spending committee
labels to each allocation.

Figure 6 compares our generated dataset (DSSG) with the
existing databases of earmarks from Citizens Against Gov-
ernment Waste (CAGW) and the Congressional Research

Figure 6: Comparison of our earmarks database (DSSG)
with CAGW and CRS databases. Missing bars imply that
the database doesn’t contain earmark counts for that par-
ticular year or those years couldn’t be retrieved easily.

Service (CRS). On average, our dataset includes approxi-
mately 3,000 more earmarks than CAGW and approximately
2,100 fewer earmarks than CRS. Our dataset also contains
five times more earmarks in 2007 than CAGW. CAGW iden-
tified only 2,658 earmarks that year because of a “joint reso-
lution that excluded pork from every appropriations bill ex-
cept Defense and Homeland Security.”[5] Our system, how-
ever, identified budget items from the appropriation bills in
2007 that very closely resembled earmarked projects from
other years.

The 2009 results look like an outlier, but we randomly ex-
amined 100 of those identified earmarks, and 95% of them
were correct. We interviewed a K Street lobbyist, and he
confirmed that these results are consistent with his impres-
sion of earmark behavior over the last decade. He said the
big spike in 2009 earmarks is what led Republicans to ban
earmarks in the House the following year [1]. Rather than
finding too many earmarks in 2009, it may be that we found
too few in other years.

From the 1990s through 2005, there is an upward trend
in the number of earmarks in all three datasets. Then the
use of earmarks appears to have declined except in 2009.
The up-and-down trends in earmarks suggests a shift in the
nature and processes of earmarking projects over time.

Using our dataset, we can conduct more longitudinal anal-
yses of congressional processes. One outstanding question
that has huge implications for political scientists and pub-
lic policy is whether chairing an appropriations committee
impacts the number earmarks granted to the chair’s state.
Figure 7 shows the results of a difference-in-differences anal-
ysis for the nine times a chair of a House or Senate Appro-
priations committee changed hands between 1995 and 2010.
Before a state gained the chair, it could be expected to have
the same number of earmarks as other states that lacked
the chair. But after a state gained the chair, it could expect
about 15 more earmarks than the states that did not gain
the chair—a 6% bump over the baseline. This relationship
holds when leaving the 111th congress (which covered 2009
and 2010) out of the analysis.



Figure 7: The number of expected earmarks before and af-
ter a state gained a chair of Appropriations (blue) and the
number of expected earmarks before and after another state
gained a chair of Appropriations.

8. FUTURE WORK
Our focus in this work has been on extracting earmarks

from tables. We built the allocation table parser based on
documents from 2005 and 2008-2010. If Congress used dif-
ferent formats in other years, the parser may fail to extract
all allocations, leading to incomplete data. We plan to make
a more in-depth survey of table formats used in congressional
texts and generalize our table parser if necessary. Another
avenue of future research involves identifying earmarks in
free text. We believe the direct citations of free-text ear-
marks provided by the OMB make this task tractable. Fi-
nally, we hope to augment our earmarks dataset with more
fields. In the current release, we provide the state and dis-
trict the earmark went to if it is explicitly mentioned in the
extracted allocation. We would like to provide more de-
tailed geo-coding by locating the entities mentioned in the
allocation. We also plan to include the dollar amount of the
earmark, which involves determining the units the allocation
is in.

9. CONCLUSION
It has been difficult to study how earmarking affects the

legislative process due to the lack of comprehensive and
open data on earmarks. This is mainly due to the immense
amount of effort required by humans to sift through the
thousands of pages of legal text produced by Congress each
year. For the fiscal years 2005 and 2008–2010 the Office of
Management and Budget (OMB) published a comprehensive
dataset of earmarks through a massive inter-agency effort.
We developed an automated system that learned how the
OMB classifies budget allocations as earmarks. As a result,
we were able to extend the scope of the OMB effort to ad-
ditional fiscal years.

More generally, we have presented an example of how data
mining and machine learning can be used to glean structured
data from congressional documents. This structured data
can be used to make transparent and quantitatively eval-
uate the functioning of legislative processes. Much of the
difficulty in our work arose from the lack common table for-
mats, document identifiers and document structure. These

problems would be solved by Congress adopting machine-
readable formats.

Our system is available at the Data Science for Social
Good (DSSG) GitHub repository, and our dataset is avail-
able at the DSSG website: http://dssg.uchicago.edu/earmarks/.
The dataset is already being used by Harris School of Public
Policy researchers to do public policy research and analysis.
In addition, it is being promoted by both the Center for Data
Science and Public Policy as well as the Sunlight Founda-
tion to researchers and practitioners interested in govern-
ment transparency and public policy.
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