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ABSTRACT

The morbidity rate of cancer victims varies greatly for sim-
ilar patients who receive similar treatments. It is hypoth-
esized that this variation can be explained by the genetic
heterogeneity of the disease. DNA Microarrays, which can
simultaneously measure the expression level of thousands
of different genes, have been successfully used to identify
such genetic differences. However, microarray data typically
has a large number of features and relatively few observa-
tions, meaning that conventional machine learning tools can
fail when applied to such data. We describe a novel proce-
dure called “nearest shrunken centroids” that has success-
fully detected clinically relevant genetic differences in cancer
patients. This procedure has the potential to become a pow-
erful tool for diagnosing and treating cancer.
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1. OVERVIEW

When a patient is diagnosed with cancer, various clinical
parameters are used to assess the risk of metastasis and
death in that patient. However, despite numerous advances
in the field, our ability to determine the risk of morbidity
is extremely limited. Tumors that appear indistinguishable
under the microscope may have drastically different effects
on the patient.

It has long been known that cancer is a genetic disease.
Thus, it is commonly believed that these differences in the
clinical outcome of cancer can be explained by differences
in the genetic profile of the tumor. Unfortunately, until
recently, our ability to directly observe the genetic makeup
of a tumor was extremely limited.

This is changing, however, with the advent of DNA microar-
rays. Microarrays can simultaneously measure the expres-
sion levels of thousands of genes in an organism. Thus, they
have the ability to detect differences between tumors at the
molecular level. This is illustrated in Figure 1. Under the
microscope, the two types of lymphoma appear to be identi-
cal. However, gene expression profiling reveals that the two
tumor types are actually distinct at the molecular level.
The ability to identify such subgroups has important impli-
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Figure 1: DNA Microarrays can identify differences between
tumors that are not detectable under a microscope. Us-
ing conventional microscopic analysis, the lymphoma cells in
groups A and B appear to be identical. Microarrays analysis
shows that different genes are active and inactive in these
two groups, indicating that they represent distinct disease
subtypes.

cations for the diagnosis and treatment of cancer. Suppose
one subtype of cancer is likely to metastasize whereas an-
other subtype is not. The patients who have a high risk of
metastasis would need to be treated aggressively, whereas
the other patients could be given a less invasive treatment
(or no treatment at all). If there is no way to distinguish
between these subtypes, all patients would need to be given
the aggressive treatment. However, this is highly undesir-
able, because current treatments for cancer, such as surgery
or chemotherapy, have extremely severe side effects. (In fact,
some cancer patients have died as a result of chemotherapy.)
If we could successfully identify the patients with a high risk
of metastasis and death, we could give them the appropriate
treatment while sparing other patients from the noxious side
effects that such treatment would entail.

This is essentially a classification problem. Given a number
of features (gene expression levels), we wish to predict which
type of cancer is present in a patient. Many machine learn-
ing procedures have been developed for this type of problem.
(See, for example, [4; 6].)

Unfortunately, these existing machine learning procedures
cannot be directly applied to microarray data. The number
of features is extremely large compared to the number of
observations, causing most machine learning procedures to
fail. Moreover, it is important to identify to identify which
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genes are the best predictors of tumor type. Using the ex-
pression level of thousands of different genes to make a di-
agnosis is not practical with existing technology (and may
never be feasible). If we can identify a small subset of pre-
dictive genes, we could use these genes to raise antibodies
suitable for immunostaining. Alternatively, it may be possi-
ble to develop RNA-based diagnostic tests using RT-PCR.
Both of these techniques, however, can only be applied to a
relatively small number of genes. Thus, it is important to
identify which genes are necessary to perform such a classi-
fication.

2. PAM: A TOOL FOR CLASSIFYING TU-
MORS BASED ON MICR OARRAY DATA

Recent attempts to classify tumors using microarray data
have used statistical methods [3; 5; 7] and artificial neural
networks [8]. We describe an alternative method that per-
forms well on a wide variety of problems. It is also easy to
understand and interpret.

PAM is based on a technique known as “nearest shrunken
centroids.” We illustrate the utility of this method by ap-
plying it to a microarray data set of small round blue cell
tumors (SRBCT) of childhood [8]. The data set consists
of measurements of the gene expression level of 2308 genes
from 88 patients. Four different types of tumors were rep-
resented: Burkitt lymphoma (BL), Ewing sarcoma (EWS),
neuroblastoma (NB), and rhabdomyosarcoma (RMS). The
authors divided these patients into 63 training cases and 25
test cases. Using neural networks, they classified the test ob-
servations with 100% accuracy. Their model used 96 genes.
Tibshirani et al. [10] first analyzed this data set using a near-
est centroid classifier. (For a description of this technique,
see [6].) A nearest centroid classifier calculates the distance
between a given test sample (patient) to the class centroid
of each of the four classes. The test sample is classified to
the class for which this distance is the smallest.

The class centroids of the SRBCT data are shown in Figure
2 (gray bars). When a nearest centroid classifier is applied
to this data, it makes a total of five errors on the 20 test
samples. This result shows that nearest centroid classifiers
can be successfully applied to microarray data. It has sev-
eral advantages compared to existing methods for classifying
microarray data. In particular, it can be easily applied to
problems with more than one class.

However, this technique still has several drawbacks. The
technique of Khan et al. [8] makes zero test errors on the
same data set. Moreover, nearest centroids requires that
all 2308 genes be used for the classification. It would be
desirable to develop a classifier with greater accuracy that
uses fewer genes.

3. DESCRIPTION OF NEAREST SHRUNK-
EN CENTROIDS

To overcome the shortcomings of the nearest centroid clas-
sifier, Tibshirani et al. [10] proposed a modification of the
nearest centroid algorithm known as “nearest shrunken cen-
troids.” The idea behind nearest shrunken centroids is the
following: We calculate each class centroid as we would in a
nearest centroid classifier. Then we divide each centroid by
the within class-standard deviation for each gene. This gives
greater weight to genes whose expression is stable among pa-
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tients in the same class. Then we apply soft thresholding to
the resulting normalized class centroids. If the normalized
centroid is small, it is set to zero (and hence disregarded
for the remainder of the calculation). By so doing, we obvi-
ously reduce the number of genes that are used in the final
predictive model. One would hope that this would improve
the accuracy of the model as well, since we would remove
irrelevant genes.

Suppose there are n patients and p genes. We will let x;;
denote the expression of the ith gene of the jth patient.
Also, suppose there are K classes. Let Cj, denote the indices
of the ny samples in class k. Then the component of the
centroid corresponding to the ith gene in the kth class is

given by
Tip = Tij
JECK

and the overall centroid corresponding to the ith gene in the
kth class is

Be=) 2 (2)

Let
Tik — T
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where s; is the pooled within-class standard deviation for
gene i:

K
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(The quantity so in the denominator is a positive constant
included to prevent the possibility that a gene with a low
expression level could produce a large d;; by chance. It has
the same value for all genes. One possibility is to let so equal
the median of the s;’s.)

Equation (3) can be written as

Zix, = Ti + mr(si + s0)dix (6)
Now, we apply soft-thresholding to these centroids. Let
dix = sign(dir)(|dir| — A)+ (7)
where
t ift>0
ty = 8
* {0 otherwise ®

We choose the optimal value of A by cross-validation. (By
default, the PAM software tests 30 possible values of A rang-
ing from 0 to the value of the largest centroid in the data set.
The optimal A is chosen to be the value for which the cross-
validation misclassification error rate is minimized.) Then
we define the “shrunken centroids” to be

T, = Ti + mi(si + so)diy, 9)

Note that if d};, = 0 for all k for a given i, then all of the
shrunken centroids are zero, and gene ¢ does not contribute
to the final classification.
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Figure 2: Centroids (gray) and shrunken centroids (red) for the SRBCT data set. The overall centroid has been subtracted
from the centroid of each class. The horizontal units are log ratios of expression, and the order of the genes is arbitrary.

Now suppose that we have a “test patient” with expression
levels z* = (z1,23,...,%;). We wish to classify z* to the
class whose “shrunken centroid” is nearest to z*. Let

~ (o) — 5u)?
:ZE:'zjjlzgyf'—Qlogﬂk (10)
i=1

Sk (z™)
(Here, 7, represents the prior probability of class k, that is,
the proportion of class k in the population. If 7 is unknown,
it can be estimated from the data, or we can let m, = 1/K
for all k£.) Then the classification rule is C(z*) = £ where

de(z™) = mkinék(x*) (11)

If we wish to estimate the probability that z* belongs to a
given class, we may do so in the following manner:

o exp(—bi(@)/2)
) = SR e (—dn(@)2)

(This is analogous to the procedure used to estimate class
probabilities in Gaussian linear discriminant analysis; see [6]
for details.)

The discriminant scores in (3) are similar to those used in
linear discriminant analysis (LDA). LDA uses the Maha-
lanobis metric to compute the distance between a given test
observation and the class centroids (in vector notation):

PN = (2" — )W (=" —z) — 2logm, (13)

(12)

Here W represents the pooled within-class variance/covari-
ance matrix of the expression data. LDA has been success-
fully applied to a wide variety of prediction problems [6].
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However, LDA cannot be directly applied to gene expression
data, since the number of predictors (genes) is much greater
than the number of samples (patients). As a consequence,
the matrix W is extremely large. Thus, any sample estimate
of W will be singular, and its inverse will be undefined.
Nearest shrunken centroids is thus similar to LDA, with sev-
eral key differences. It assumes that the covariance matrix
W is diagonal. As noted earlier, it would be impossible
to perform the necessary calculations without this assump-
tion. Also, LDA uses the raw class centroids, whereas we
use shrunken centroids. An important consequence of this
fact is that there will be some genes for which d}, = 0 for
all k. Such genes will not be used in the classification.

4. RESULTS ON THE SRBCT DATA

This procedure was applied to the SRBCT data of [8]; see
[10] for the complete results. The value of A in Equation (3)
was chosen by applying ten-fold cross-validation. Both the
cross-validation error and test error were minimized when
A = 4.34. The error curves are shown in Figure 3. The re-
sulting shrunken centroids are shown in Figure 2 (red bars).
This model produced zero cross-validation errors and zero
test errors. It required 43 genes. Thus, for this data set,
nearest shrunken centroids produces accurate predictions us-
ing relatively few genes.

Figure 4 shows the 43 genes that were used to classify SR-
BCTs together with the value of their shrunken centroids for
each of the four classes. Note that the genes with non-zero
components in a given class are almost mutually exclusive.
Figure 5 shows the estimated probabilities of belonging to
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Figure 3: The error curves (training: tr/green, cross-validation: cv/red, and test: te/blue) resulting from applying nearest
shrunken centroids to the SRBCT data. The value A = 4.34 minimizes the cross-validation error rate. It produces a set of
43 genes.
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BL NB

813841 tissue plasminogen activator
859359 quinone oxidoreductase homolog
207274 insulin-like growth factor 2
296448 insulin-like growth factor 2 (somatomedin A)
898219 homolog of mouse mesoderm specific transcript
784224 fibroblast growth factor receptor 4
796258 sarcoglycan alpha (dystrophin-associated glycoprotein)
244618 EST
789253 presenilin 2 (Alzheimer disease 4)
298062 troponin T2, cardiac muscle isoforms
461425 myosin MYL4
1409509 troponin T1, slow skeletal muscle isoforms
42558 L-arginine:glycine amidinotransferase
769716 neurofibromin 2 (mutated in neurofibromatosis type 2)
25725 farnesyl-diphosphate farnesyltransferase 1
44563 growth associated protein 43 (GAP43)
325182 N-cadherin (neuronal)
812105 ALL1-fused gene from chromosome 1q
41591 meningioma 1 (disrupted in balanced translocation)
810057 cold shock domain protein A
52076 neuroblastoma protein (NOE1)
866702 Fas-associated protein tyrosine phosphatase 1
814260 follicular lymphoma variant translocation protein 1
43733 glycogenin 2
357031 tumor necrosis factor alpha-induced protein 6
1435862 MIC2 surface antigen (CD99)
770394 1gG Fc fragment receptor transporter, alpha chain
377461 caveolin 1 (caveolae protein)
1473131 transducin-like enhancer of split 2

295985 EST
= 241412 E74-like factor 1 (ets domain transcription factor)
80109 major histocompatibility complex, class Il, DQ alpha 1
= 183337 major histocompatibility complex, class Il, DM alpha

233721 insulin-like growth factor binding protein 2
897788 receptor type protein tyrosine phosphatase F
563673 antiquitin 1
504791 glutathione S-transferase A4
212542 cDNA DKFZp586J2118
365826 growth arrest-specific protein 1
204545 EST
308163 EST

21652 alpha 1 catenin (cadherin-associated protein)
486110 profilin 2

Figure 4: The values of d;;, for the 43 genes for which at least one d;, is nonzero for the SRBCT data. Note that the genes
with nonzero shrunken centroids in each class are almost mutually exclusive.

SIGKDD Explorations. Volume 5,Issue 2 - Page 52



each class for each patient. For most patients, the estimated
probability of belonging to the true class was significantly
greater than the estimated probability of belonging to any
other class. It is also interesting to examine the estimated
probabilities of five test samples that were not SRBCTs.
(These five samples are marked with a circle on the graph.)
Note that the estimated probabilities for these five cases are
significantly lower than the estimated probabilities for the
true SRBCTs.

5. DIAGNOSIS OF CANCERS WHERE NO
SUBTYPESARE KNOWN TO EXIST

We have seen that nearest shrunken centroids has the po-
tential to be a powerful tool for diagnosing cancer. When
several cancer subtypes are known to exist, it can use gene
expression information to distinguish between the subtypes
using a small set of genes.

However, nearest shrunken centroids is a supervised learning
procedure. It can only be applied in cases where subtypes of
cancer are already known to exist. Unfortunately, no such
subtypes have been identified for many types of cancer. In
such cases, nearest shrunken centroids cannot be applied
unless some putative subtypes can be identified.

Many types of cancer are suspected to be molecularly het-
erogeneous. For instance, diffuse large B-cell lymphoma
(DLBCL) is the most common form of lymphoma among
adults. Approximately 40% of DLBCL patients respond
to chemotherapy and recover. The remainder will usually
succumb to the disease. [9; 11] It is believed that this dis-
crepancy is the result of variation among DLBCLs at the
molecular level.

By itself, nearest shrunken centroids cannot be used to di-
agnose a patient with DLBCL. If two or more subtypes of
DLBCL were known to exist and one subtype were more
aggressive than the others, we could fit a nearest shrunken
centroid classifier to determine which subtype is present in a
given patient. However, no such subtypes have been clearly
identified.

Nevertheless, if we use nearest shrunken centroids together
with unsupervised learning methods, this problem becomes
tractable. For example, [1] analyzed a microarray data set
consisting of the expression levels of 3624 genes for 36 DL-
BCL patients. Using hierarchical clustering [2], they iden-
tified two putative subgroups of DLBCL, which they “GC
B-like DLBCL” and “activated B-like DLBCL.” They noted
that patients with GC B-like DLBCL tend to live longer
than patients with activated B-like DLBCL.

Although this result is intriguing, it has limited utility as a
diagnostic tool. Hierarchical clustering (or any other type
of clustering) can only be applied to a large group of pa-
tients. For this reason, clustering by itself cannot be used
to construct a diagnostic tool. If a patient is diagnosed with
DLBCL, the clinician must be able to perform a diagnosis on
that individual patient. He cannot wait until a large group
of other patients are diagnosed with DLBCL so that he can
apply clustering to the entire group.

Nearest shrunken centroids can overcome this difficulty. Af-
ter putative tumor subtypes have been identified, one can
apply nearest shrunken centroids to attempt to diagnose
which subtype is present in an individual patient. We would
hope that the survival times of the patients differ between
the predicted subtypes.
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We tested this idea on the DLBCL data of [1]. There were
36 patients, of which 21 were classified as having activated
B-like DLBCL and 15 were classified as having GC B-like
DLBCL. We randomly divided these 36 patients into a train-
ing set of 18 patients and a test set of 18 patients. We fit a
shrunken centroid classifier to the 18 training patients. The
cross-validation error rate was minimized when A = 1.92.
This optimal model used 67 genes. It produced 3 cross-
validation errors and 3 test errors. More importantly, how-
ever, patients in the predicted GC B-like DLBCL class lived
significantly longer than patients in the predicted activated
B-like DLBCL class (see Figure 6). Thus, nearest shrunken
centroids can be used to help diagnose cancer even if no
cancer subtypes are known to exist.

6. CONCLUSIONS

DNA microarrays have the potential to revolutionize the
way we diagnose and treat cancer. In order to fully utilize
their potential, however, we must develop tools to analyze
them. Nearest shrunken centroids is a powerful tool for ex-
tracting useful information from microarray data. By iden-
tifying the genes that are necessary to differentiate between
different types of cancer, it can help us to find candidates
for raising antibodies for immunostaining. Moreover, our re-
sults raise the possibility of creating diagnostic tests based
on RNA expression levels, perhaps using RT-PCR. Finally,
we have shown that the methodology is still useful for es-
timating the survival of cancer patients when no subtypes
have been identified. More accurate diagnoses can help clin-
icians to give each patient the appropriate therapy, which
will increase the chances that the patient will survive, and
help to spare the patient from the side effects of unnecessary
treatments.
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