

Q2C@UST: Our Winning Solution to Query Classification
in KDDCUP 2005

Dou Shen, Rong Pan, Jian-Tao Sun,
Jeffrey Junfeng Pan, Kangheng Wu, Jie Yin and Qiang Yang

Department of Computer Science, Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong, China

{dshen, panrong, jtsun, panjf, khwu,yinjie,qyang}@cs.ust.hk
http://webproject1.cs.ust.hk/q2c/

ABSTRACT

In this paper, we describe our ensemble-search based approach,
Q2C@UST (http://webproject1.cs.ust.hk/q2c/), for the query
classification task for the KDDCUP 2005. There are two aspects
to the key difficulties of this problem: one is that the meaning of
the queries and the semantics of the predefined categories are
hard to determine. The other is that there are no training data for
this classification problem. We apply a two-phase framework to
tackle the above difficulties. Phase I corresponds to the training
phase of machine learning research and phase II corresponds to
testing phase. In phase I, two kinds of classifiers are developed as
the base classifiers. One is synonym-based and the other is
statistics based. Phase II consists of two stages. In the first stage,
the queries are enriched such that for each query, its related Web
pages together with their category information are collected
through the use of search engines. In the second stage, the
enriched queries are classified through the base classifiers trained
in phase I. Based on the classification results obtained by the base
classifiers, two ensemble classifiers based on two different
strategies are proposed. The experimental results on the validation
dataset help confirm our conjectures on the performance of the
Q2C@UST system. In addition, the evaluation results given by
the KDDCUP 2005 organizer confirm the effectiveness of our
proposed approaches. The best F1 value of our two solutions is
9.6% higher than the best of all other participants’ solutions. The
average F1 value of our two submitted solutions is 94.4% higher
than the average F1 value from all other submitted solutions.
Keywords

Query classification, Synonym-based Classifier, ensemble
learning, KDDCUP 2005.

1. INTRODUCTION
Historically, search engine technologies and automatic text
classification techniques have progressed hand in hand. Ever
since the early papers by the pioneers [14][18][22], people have
recognized the possibility of conducting Web search through
classification, and vice versa [2][5][6][15]. The KDDCUP 2005
competition made this connection even stronger; the task being to
automatically classify 800,000 of the queries on a Web search
engine into a set of 67 predetermined categories provided by the
organizers. This task deviates from the traditional machine
learning and text classification formulation in the following
aspects:

• There are no training data available. It is part of the
task to collect the training data. In fact, the manually

annotated Web pages organized into topical directories
could serve as the training data. However, different
parts of the Web may provide training data of different
quality. In contrast, text classification in machine
learning and information retrieval has always included
the training data as part of the input. How to make the
best use of the Web, including its directory resources
and search tools, provides a fresh perspective.

• The data are noisy and provide poor information. Most
queries are short. There are some mis-spelt queries.
Many words have multiple meanings and belong to
several categories. For example, “office” can mean the
working place as well as a kind of software. In contrast,
several queries may in fact mean the same thing, such
as “mainboard” and “planar board”.

• The target categories suffer a shortage of semantic
meanings. The 67 categories are provided without
further explanation. Therefore, simple exact matches
between queries and category names would be certain
to fail.

Despite these difficulties, we are also encouraged by the
possibility of answering some exciting questions through
completing this challenging task. We have the following
questions:

• How can machine learning, in particular classification,
help in designing better search engines?

• Conversely, how can search engines help us design
better text classifiers?

• How can the use of different training data impact on the
quality of classification?

• How can similarity-based classification and statistics
based classification be best integrated together?

In the sections that follow, we explain our choice of solutions as
well as the results of testing these solutions on the validation and
test data set provided by the competition organizers. One
innovative aspect of our solution is the use of an ensemble of
search engines to compose the classifiers, and an ensemble of
classifiers to classify the massive input queries. The ensemble of
search engines and the final integration of the search result
showed that with moderate validation data, we can achieve a high
level of performance when we appropriately combine the query
categorization results.

2. OUR APPROACH
As in any machine learning application, we also adopt two phases
in our solution. In phase I, which corresponds to the training
phase of machine learning research, we collect data from the Web

Page 100Volume 7, Issue 2SIGKDD Explorations

Figure 1. The architecture of our approach Q2C@UST

Figure 2. The two-stage framework in the “testing phase” of our approach Q2C@UST

for training two base classifiers that map a query to the 67
categories provided by the KDDCUP 2005 organizers (KDDCUP
categories).
In phase II, which corresponds to the “testing phase” in machine
learning research, we process each query through a two-stage
framework to handle the problem of query classifications. The
overall framework of our approach is summarized in Figure 1
and the detailed illustration of phase II is shown in Figure 2.
Phase II consists of two stages performed in a row. The first stage
is to enrich the queries by searching the relevant pages which can

provide the meanings for the queries in order for them to be
classified. Enrichment is necessary because the queries are rather
short, and thus their meanings ambiguous. We perform the
enrichment process by finding the relevant text from related Web
pages or the category information of these pages through Web
search.
The second stage of phase II is to classify the queries based on the
data collected in the first stage and using the classifiers trained in
the first phase. At this stage, based on the classification results
through the two kinds of base classifiers, two ensemble classifiers

Page 101Volume 7, Issue 2SIGKDD Explorations

with different ensemble strategies are employed to classify the
queries.
The experimental results show that the ensemble classifiers can
improve the classification performance significantly.

2.1 Phase I: Training base Classifiers
We now discuss phase I of our approach: training classifiers for
query classification. As noted above, a main problem of our task
is the lack of training data. This is a new problem in machine
learning: without training text documents with class labels, many
previous methods cannot be used.
We tackle this problem by developing two kinds of base
classifiers, which we later combine in an ensemble-search based
classifier (Section 2.3). The first kind of base classifier is the
synonym-based classifiers which uses the category information
associated with Web pages collected for each query. The second
kind of base classifier is statistical classifiers in which Support
Vector Machine (SVM) is employed. We obtain two ensemble
classifiers by combining these two kinds of classifiers according
to different ensemble strategies, which improves the classification
performance significantly more than the base classifiers.

2.1.1 Synonym-based Classifiers
As discussed in Section 2.1, after the query enrichment stage, we
obtain a ranked category list for each query through a search
engine. Since the category hierarchies from different search
engines are distinct, the categories in different ranked lists vary a
lot. In addition, the hierarchies of the search engines differ greatly
from that given in the KDDCUP 2005 competition task. For
convenience, we call the former the search engine space for a
search engine, and the latter the KDDCUP space. For a particular
search engine, our objective is to build a mapping function
between the two spaces. Using this mapping function, we can
classify a query into the 67 KDDCUP categories.
The mapping function can be built by keyword matching. We
compare the keywords of categories in the KDDCUP space with
those in the space of a certain search engine. Consider two
categories, c1 and c2, where c1 is from the space of KDDCUP and
c2 is from the space of a certain search engine. If they share some
of the same keywords, we can map c2 to c1 directly. The
categories in the space of KDDCUP have two levels, such as,
“Computers\Hardware” and “Entertainment\Other”. The second
level specifies a particular field within the first level. For most of
the categories in the space of KDDCUP, we only consider the
keywords at the second level because they are not confused with
other categories. A typical example is “Computers/Internet &
Intranet”. Even when we do not consider the first level for all the
categories, there are no other categories which can be confused
with “Internet & Intranet”.
However, there are many categories that are more difficult to deal
with. For them we require that the keywords in the first level and
the second level should simultaneously match the categories in
the space of a certain search engine. Otherwise, we cannot
distinguish between two categories that share the same keywords
only in the second level, such as “Computers/Hardware” and
“Living/Tools & Hardware”. Although they both have the
keywords “Hardware” in the second level, they belong to two
different domains “Computers” and “Living” in the first level. We
give two examples to illustrate the above two cases:

• “…/internet/…” is mapped to “Computers/Internet and
Intranet”;

• “…/Computers/…./Hardware/…” is mapped to
“Computers/Hardware” while “…/Living/…/Hardware/…”
is mapped to “Living\Tools & Hardware”.

In the implementation of the keywords matching method, we need
to consider three special cases.

• On the second level of categories from the space of
KDDCUP, the words connected by “&” can individually
specify a concept. For example, in “Computers\Internet &
Intranet”, both “Internet” and “Intranet” can represent an
individual concept. However, the words connected by a
space can specify a concept only when they are joined
together. One example is “Sports\Olympic Games” in which
we need the two words together to define a concept.
Therefore when matching the keywords, we take each word
connected by “&” as a keyword and the combination of the
words connected by space as keywords.

• We extend the keywords to include both the singular and
plural forms in advance. For example “Living\Book &
Magazine” is extended to “Living\Book & Magazine &
Books & Magazines”. Then we can conduct exact matching
without missing any possible mapping.

• Seven out of the 67 KDDCUP categories just have a
keyword “Other” on the second level, such as
“Computers/Other”. It is impossible to determine their
semantics without taking other categories into consideration.
In our approach, given a KDDCUP category, say
“Computers/Other”, we firstly collect all the categories
containing the first level keyword, “Computers”, in the space
of a search engine. Then we remove the ones which can be
mapped to other KDDCUP categories with the same first
level as the target categories.

After applying the above direct mapping procedure, we may still
miss a large number of mappings; many categories in the space of
a search engine do not occur in the space of KDDCUP although
they share words with the same meanings. In response, we expand
the keywords in each label in the KDDCUP categories through
WordNet [25]. For example, the keyword “Hardware” is extended
to “Hardware & Devices & Equipments” and the keyword
“Movies” is extended to “Movies & Films”.
Using different search engines, we might have different category
spaces. For each space, we can construct a mapping function
between it and the space of KDDCUP categories. After obtaining
these mapping functions, we can perform query classifications
based on the category lists of each query collected in the data
collection stage. For each category list of a target query, we map
the categories to the space of KDDCUP according to the
corresponding mapping function. We accumulate the number of
times for each category in the space of KDDCUP being mapped
onto. Then we can obtain the categories for the target query in the
space of KDDCUP together with their occurrence count. By
ranking the categories in terms of the occurrence count, we get a
ranked list of KDDCUP categories into which the target query
can be classified. Based on different category lists and their
corresponding mapping functions, we gain different classification
results. Here, we refer this kind of classifier as a synonym-based
classifier.

Page 102Volume 7, Issue 2SIGKDD Explorations

Based on the direct mapping approach, the synonym-based
classifiers tend to produce results with high precision but low
recall. They produce high precision because the synonym-based
classifiers are based on the manually annotated Web pages and
can utilize the classification knowledge of editors. Therefore,
once a mapping function is constructed, it is highly probable the
classification result is correct. For example, we have shown that
the categories such as “…/Computers/…./ Hardware/…” are
mapped to “Computers/Hardware”. Therefore, once a Web page
associated with a query falls in the category
“Computers/Hardware/Storage/Hard_Drives”, we can assign
“Computers/Hardware” to the query with high confidence. They
produce low recall because it is hard to find all the mappings from
the search-engine categories to the KDDCUP categories by
keyword mapping. About 80,000 of the 354,000 categories in the
category space of Google are not mapped onto the space of
KDDCUP. Therefore, we cannot map all the categories in the
category list for a query to the 67 KDDCUP categories and may
miss some correct categories for the query. Another reason for the
low-recall problem is that a search engine may return only a few
or even no Web pages with categories. The synonym-based
classifier may fail because of the search results shortage problem.
Therefore, we need to construct other classifiers to help handle
the low-recall problem which is described in the next section.

2.1.2 Statistical Classifiers
As discussed in the previous subsection, the synonym-based
classifiers have a low-recall drawback. In order to address this
problem, we proposed to use the statistical classifier to help
classify queries. The statistical classifier classifies a query based
on its semantic content. Thus even if the synonym-based classifier
fails, a query can also be classified by a statistical classifier. In
this paper, we use the Support Vector Machine (SVM) classifier
because of its high generalization performance for document
classification tasks and is easy to implement [12][13] .
When SVM is used for classification tasks (e.g., document
classification), the first step is to train a model using a set of
training examples. Then the model can be used to classify other
examples. Apparently, it is not straightforward to apply SVM for
a query classification task. There are at least two problems as we
have discussed. Firstly, there is no training data available, and we
only have the names of the 67 categories. Secondly, it is easy for
a human being to capture the semantic meanings of a query and to
identify its categories. However, for a statistical classifier, we
must put forward a method to represent a query, i.e., to construct
a query’s features.
The above problems are both dealt with in our approach. For the
first problem, we collect the training examples for the 67
categories by leveraging the mapping function constructed in the
synonym-classifier learning step and the manually labeled Web
page directory, such as ODP, etc. For each KDDCUP category,
we can find a set of categories from the ODP directory by the
mapping function. Thus Web pages contained in those collected
ODP categories are used as the training documents for the target
KDDCUP category. After the training examples are collected for
each KDDCUP directory, the SVM training algorithm can be used
to train the classifiers. For the second problem, we use the results
returned by a search engine to help represent a query. As
discussed in section 2.1, most queries contain only a few terms.
Therefore, it is common that a query may be relevant to several

topics. By leveraging the search results returned by a search
engine, we try to capture the multiple topics relevant with the
issued query. We keep the top N results (the parameter N are
studied in section 3) and use the aggregate terms of the
corresponding snippets, titles, URLs terms and the category
names in the directory to represent the query. Finally, the query’s
bag of terms is processed by stop-word removal, stemming and
feature selection. The resultant term vector can be used as input
for the SVM classifiers and a ranked list of categories for each
query is produced.
In our approach, the ODP directory is used for the purpose of
collecting training documents. The SVMlight software package is
used for training (http://svmlight.joachims.org/). The linear kernel
is used and the one-against-rest approach is applied for the multi-
class case. The DF and the information gain methods are used for
feature selection. For KDDCUP categories which contain too
many training examples, we use a sampling approach to decrease
the scale of SVM training.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3 4 5 6 7 8 9 ≥10
Num ber of w ords per query

Fr
eq

ue
nc

y

Figure 3. Frequency of queries with different length

2.2 Phase II, Stage I: Query Enrichment
In our second phase, we have two stages. In stage one, we take
each query and enrich it so that there is a body of relevant text
that represents this query. This step is a key task because our goal
is to classify 800,000 queries into 67 categories without any
additional descriptions about these queries.
The 800,000 queries vary a lot. They might be as simple as a
single number such as “1939” or as complicated as a piece of
programming code which involves more than 50 words. shows
the statistical information about the number of words in each
query and the frequencies in the 800000 queries. From this figure
we can see that queries containing 3 words are most frequent
(22%). Furthermore, 79% of queries have no more than 4 words.
Each query is a combination of words, name of persons or
locations, URLs, special acronyms, program segments and
malicious codes. Some queries contain words which are very
clean while others may contain typos or meaningless strings
which is totally noisy. Some words may just have their meanings
as defined in a static dictionary while others may have some
special meanings when used on the Internet.
Moreover, the meaning of words may also evolve over time. For
example, “apple” is a kind of fruit as given in a dictionary.
However, it is also related to the name of a famous computer
corporation nowadays. Thus, we cannot classify a query solely

Page 103Volume 7, Issue 2SIGKDD Explorations

relying on a static and out-of-date training set. Instead, we should
try to catch its meanings by asking the Internet, retrieving related
documents and extracting its semantic features. What is more, in
order to obtain a better and unbiased understanding of each query,
we should not rely on a single search engine but combine multiple
results from different search engines.
In our approach, we send each query into Google [10], Looksmart
[20] and a search engine developed by ourselves based on Lemur
[17]. We chose these three search engines because they can
provide both directory search and Web search. Directory search
refers to search algorithms that return the related pages of a query
together with the pages’ categories. Since these categories of Web
pages are labeled by people, it is appropriate to use them as the
ground truth to classify the queries. However, not all the pages
indexed by the search algorithm contain category information; in
this aspect, Web search, which is used to refer to search algorithm
as we typically use, can return more related pages that directory
search cannot. Based on the content of the pages returned by Web
search, we can classify the queries using a text classification
algorithm. To enrich a query through search engines, we use the
following three steps:

1. In step one, we first try to get the related pages through
“Directory Search”;

2. In step two, if we cannot get sufficient results from step
one, we try to apply “Web Search” to the query to
obtain the text;

3. If the retrieved results from Step two are still not
enough, we check whether the queries are too noisy. If
so, we use some preprocessing approaches to clean
them up and repeat step 1 and step 2. Usually, after
preprocessing on the noisy queries, we can obtain some
meaningful and clean queries which make it possible to
get new retrieved results through step 1 and step 2.

We use Google as an example to illustrate the three steps as
shown in Figure 4.

• At the root level, all 800,000 queries are preprocessed
by removing special characters such as “@,#,%” while
keeping letters and digits. These 800,000 queries are
first sent into the Google Directory Search. We can see
from Figure 4 that we are able to retrieve related pages
for 500,000 (63%) of all queries in this way.

• We then send the remaining 300,000 queries into the
Google Web Search and obtain results for the additional
200,000 queries.

• For the remaining 100,000 queries, we conduct further
preprocessing. We use the function of “Did you
mean…”, provided by Google to trigger the search for
the most relevant queries to the original ones. For
example, given the query “a cantamoeba”, neither
Google “Directory Search” nor “Web Search” returned
any results. However, by trying the function “Did you

Figure 4. Illustration of the three steps for query enrichment

Page 104Volume 7, Issue 2SIGKDD Explorations

mean…”, Google can return the results for the word
“acanthamoeba” which is related to health, disease and
medicine. In this way, we can get the results for
another set of 60,000 queries from Google’s
“Directory Search”or “Web Search”.

• However, after this step, there are still 40,000 queries
left without any results. These queries are very noisy.
They are usually connected words without spaces,
long meaningless clobbers, or URL addresses
containing parameters or even malicious codes. We
try to convert theses queries into meaningful ones by
extracting words from them through a maximum
matching method based on the dictionary WordNet
[25]. This method tries to extract as many meaningful
words as possible and any extracted words should be
as long as possible.
Take the query “wheelbearingproblemsdamage” as an
example, Google can not return any results through
either “Directory Search”, “Web Search” or even “Did
you mean…”. Therefore, we can split the whole query
into four meaningful words “wheel bearing problems
damage”. After that, we can get reasonable results
from Google “Directory Search” or “Web Search”. In
this way, we can get the results for 30,000 out of the
remaining 40,000 noisy queries.

Based on the above procedures, there are only 10,000 queries
without any pages returned from Google. These queries are
inherently noisy and meaningless, such as “dddddfdfdfdfdf”.
We do not have to deal with these queries.
Note that in the query processing tree shown in Figure 4, the
quality of the retrieved documents at different leave nodes may
be different; the closer a node is to the root, the higher the
quality of the result. Thus, the results of the 700,000 queries by
applying “Directory Search” and “Web Search” are of high
quality and reflect the true meanings of these queries. However,
the results of the other 100,000 may not be reliable because we
revise the queries to some extent.
We follow the same steps when using Looksmart [20]. Among
the 800,000 queries, about 200,000 queries have “Directory

Search” results. 400,000 have “Web Search” results and the
remaining 200,000 have no results.
The third engine we use was developed by ourselves based on
search engine constructor Lemur [17]. We first crawled 2
million Web pages with the category information from Open
Directory Project (ODP) [21]. Then we indexed the collection of
these pages with Lemur. Given a query, Lemur can retrieve a
number of pages which are most relevant to the query together
with their corresponding categories. Therefore the function of
this search engine based on Lemur and the ODP data is similar
to the “Directory Search” provided by Google and Looksmart.
Using this search engine, we can retrieve related pages for all
but 35.000 of the 800,000 queries..
In summary, after enriching the queries through a search engine,
we can obtain two lists for representing each query. One is the
relevant Web pages list. The other is a category list
corresponding to the Web pages in the Web page list.

2.3 Phase II, Stage II: Query Classification
through Ensemble Classifiers
From Phase I, we have constructed various classifiers which can
classify the input queries into the KDDCUP categories. In this
section, we discuss how we combine the results of these
classifiers in the query-classification phase (testing phase) by an
ensemble classifier, so that we can complete the task of query
classification.
An ensemble is a set of models whose predictions are combined
by weighted averaging or voting. Dietterich states that "A
necessary and sufficient condition for an ensemble of classifiers
to be more accurate than any of its individual members is if the
classifiers are accurate and diverse." [7] Recent work shows that
models trained with different learning algorithms often make
uncorrelated errors. Therefore, an ensemble of good models
trained with different learning algorithms often outperforms the
best model trained by one of the learning algorithms [4].
Moreover, many empirical investigations have shown that
ensemble learning methods often lead to significant
improvements across a wide range of learning problems
[1][3][8][9][23].

classifier 1

classifier n

...

Category 1

Category j

Category 67

w_11

 w_1j

...

Query

w_n
j

 w_n67

...
...

Top k
Categories

Sort categories by
voting score

...

 w
_1n

 w
_n

1 ...

Figure 5. The ensemble paradigm

Page 105Volume 7, Issue 2SIGKDD Explorations

We use two approaches to training the ensemble classifiers. The
first is to make use of the validation data set which contains 111
pairs of query-to-category mappings provided by the KDDCUP
organizers, to adjust the combination weights. The second
approach is to ignore this validation data set in order to avoid
overfitting.
Our primary method in combining different classifier functions is
to assign an ensemble weight value to the result returned by each
classifier function, and rank the final list of classified categories.
(See Figure 5) It is tricky to assign the ensemble weights.
Different classifiers introduced in the above sections have
different performance. Some may work better than others on
certain categories. For example, a classifier may achieve high
precision on one category while having high recall on the other
category. This indicates that it is not proper to assign a single
weight to a classifier. Instead, we should differentiate the weight
of a classifier on different classes according to its performance.
To determine the weights, we validate each component classifier
on the 111 samples given by the KDDCUP organizers. The
higher precision a classifier achieves on a category, the higher
weight assigned to the classifier on that category. As a result,
each classifier may obtain a weight value Wij on a KDDCUP
category j.
However, the 111 samples may be too small to be a suitable
validation data set as it is easy to be overfitting on these samples.
Therefore, a conservative way to combine the classifiers is to
assign equal weights to them.
Both the weight-assignment strategies in ensemble classifier
construction are compared in the following experiments.

3. EXPERIMENT AND DISCUSSION
To test our proposed approach, we conduct some experiments on
the datasets provided by the KDDCUP 2005 organizer. The
experimental results validate the effectiveness of our approach. In
addition, we give some analysis of the consistency of the three
labelers on their judgment of the performance of the classifiers in
this part.

3.1 Dataset
The KCCCUP2005 organizer provides a dataset which contains
111 sample queries together with the manual categorization
information. These samples help exemplify the format of the
queries and provide the semantics of a tiny number of queries. In
fact, since the category information of these queries is truthful,
they can serve as the ground truth for the test data and validation
data for our proposed classifiers. Later, after the competition is
finished, to test the solutions submitted by the participants, the
organizer provides another dataset which contains 800 queries
with labels from three human labelers. We denote the three
labelers (and sometimes the dataset labeled by them if no
confusion is caused) as L1, L2 and L3, respectively. We refer to
the former as Sample Dataset and the latter as Testing Dataset in
the following sections.

3.2 Evaluation Criterion
The evaluation criteria adopted by the KDDCUP organizer is the
standard measures to evaluate the performance of classification in
Information Retrieval (IR), including precision, recall and F1-
measure [24]. The definitions of precision, recall and F1 in the
query classification context are given below:

A: ∑
i

icastaggedcorrectlyarequeriesof#

B: ∑
i

icastaggedarequeriesof#

C: ∑
i

iciscategorywhosequeriesof#

B
Aecision =Pr

C
Acall =Re

callesion
callecisionF

RePr
RePr21

+
××

=

For the Sample Dataset, we report the precision, recall and F1
evaluation results for each classifier. For the Testing Dataset,
three labelers are asked to label the queries, thus the results
reported on this dataset are the average values[19]. Take the
calculation of F1 as an example:

∑
=

=
3

1

i)labeler human against (F1
3
1 F1 Overall

i

3.3 Experimental Results and Explanation
As introduced in the previous section, we have a total of six
classifiers, three synonym-based classifiers, one statistical
classifier that is SVM and two ensemble classifiers. For simplicity,
we refer to the three synonym-based classifiers which rely on
Google, Looksmart, and Lemur as S1, S2 and S3 respectively. We
denote the ensemble classifier which relies on the validation
dataset as EV and the one that does not rely on validation data as
VN. In the following part, we first investigate the two main
parameters which affect the performance of our proposed
classifiers on the sample dataset and then we compare the
performance of those classifiers. Finally, we give some analysis
of the consistency of the three labelers on their judgment of the
classifiers’ performance.

3.3.1 Parameter Tuning
There are two main parameters which significantly impact on the
performance of our proposed classifiers. One is how many related
pages we should use for each query. If we use too few pages, we
may fail to cover all the diverse topics of a query. However if we
use too many pages, we may introduce much noise. Another
parameter is how many labels we should assign to each query.
The competition rules allow us to assign at most 5 labels for each
query. However, in order to achieve higher precision, we should
assign fewer but very accurate labels. If we hope to achieve
higher recall, we need to assign more possible labels.

Figure 6 shows the performance of different classifiers with
respect to an increasing number of related pages used for
classification. Here, the related pages are taken into consideration
in the order they are returned by the search engines, that is in the
order of the degree of relevance with the query. The results shown
in Figure 6 verify our conjecture. As the number of related pages
increases, the precision tends to decrease, although the precision
for some classifiers increase at first. The reason is that we need a
certain number of pages to get the meaning of the query. However,

Page 106Volume 7, Issue 2SIGKDD Explorations

if we include too many pages, noise may be introduced which can
reduce the precision. From Figure 6, we can see that the critical
point for most classifiers is 40. Before that point, the performance
of the classifiers increases when we use more and more pages,
while after that point the performance begins to decrease.
Therefore in the following experiments we keep only the top 40
pages for subsequent query classification.

Figure 7 shows the performance of different classifiers by
varying the number of classified categories. As we expected,
when the number of classified categories increases, the precision
of all the classifiers decreases while the recall increases
significantly. In contrast, the value of F1 increases at the
beginning and then subsequently decreases. For most of the
classifiers, the maximum values of F1 are achieved when four
categories are generated for each query. Although the F1 values
are close to those obtained when 5 categories are assigned, the
precision values are much lower.
Based on the observation of the impact of two parameters, in
order to achieve higher precision without sacrificing F1 much, we
consider only the top 40 related pages of a query and return 4
categories for each query in most cases.

0.40

0.45

0.50

0.55

0.60

10 20 30 40 50 60 70 80 90 100

Top N Pages

Pr
e

S1 S2 S3
SVM EN EV

(1) Precision of the Six Classifiers

0.40

0.45

0.50

0.55

0.60

0.65

10 20 30 40 50 60 70 80 90 100

Top N Pages

R
ec

S1 S2 S3
SVM EN EV

(2) Recall of the Six Classifiers

0.40

0.45

0.50

0.55

0.60

10 20 30 40 50 60 70 80 90 100

Top N Pages

F1

S1 S2 S3
SVM EN EV

(3) F1 of the Six Classifiers

Figure 6. Performance of different classifiers with the number
of used related pages on the 111-sample dataset

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1 2 3 4 5 6

Number of classified categories

Pr
e

S1 S2 S3
SVM EN EV

(1) Precision of the Six Classifiers

0.10

0.20

0.30

0.40

0.50

0.60

0.70

1 2 3 4 5 6

Number of classified categories

R
ec

S1 S2 S3
SVM EN EV

(2) Recall of the Six Classifiers

Page 107Volume 7, Issue 2SIGKDD Explorations

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

1 2 3 4 5 6

Number of classified categories

F1

S1 S2 S3
SVM EN EV

(3) F1 of the Six Classifiers

Figure 7. Performance of different classifiers with the number
of classified categories on the 111-sample dataset

3.3.2 Comparison between Classifiers
From the above experimental results on the Sample Dataset, we
can see that among the four base classifiers, S1 works best while
S2 works worst. The reason why S2 does not work well is that for
many queries, we cannot obtain enough related pages through the
Looksmart search engine. For SVM, we expect that it can solve
the low-recall problem caused by the three synonym-based
classifiers, as discussed in section 2.1.1. Figure 6 and Figure 7
show that SVM obtains the highest recall in most cases. We also
notice that the two ensemble classifiers can achieve better
performance in terms of F1 than any other base classifier. For the
peak F1 values of the three best classifiers (EN, EV and S1), we
can see that, compared with S1, EN and EV improve the F1 by
4.53% and 8.67% respectively. In fact, when we design these two
ensemble classifiers, EV is expected to achieve higher precision
measure because each component classifier is highly weighted on
the classes where it achieves high precision and EN is expected to
achieve higher F1 performance since the recall is relatively high.
According to our two submitted results, the F1 value of EN (0.444)
achieves 4.2% improvement compared with the F1 value of EV
(0.426). While the precision value of EV (0.424) improves by
2.3% compared with that of EN (0.414).
The effectiveness of our proposed ensemble classifiers can also be
validated when compared with the other participants’ solutions on
the Testing Dataset. The F1 value of our solution generated by
EN is 9.6% higher than the best one among other participants’
results. The averaged F1 value of our submitted results is 94.4%
higher than the averaged F1 value of all the others.

3.3.3 Analysis of the Consistency between the Three
Labelers
In this section, we analyze and discuss the consistency between
the three labelers on their judgment of the performance of the
classifiers.
Figure 8 shows the F1 values of the six classifiers developed by
us on the testing data labeled by the three labelers. From Figure 8,
we can see that the three labelers have a high correlation with
respect to the relative performance of the classifiers, especially

labeler 1 and labeler 3. After ranking the six classifiers according
to each labeler, we calculate the spearman rank-order correlation
coefficient between each pair of the labelers [11]. The Spearman
correlation is a nonparametric approach to calculating the
relationship between two variables based on ranking the two
variables and no assumption about the distribution of the values is
made. The results are shown in Table 1.

0.30

0.35

0.40

0.45

0.50

0.55

S1 S2 S3 SVM EN EV

Labeler1 Labeler2 Labeler3

Figure 8. The distribution of the labels assigned by the three
labelers

L1.vs.L2 L1.vs.L3 L2.vs.L3

0.829 0.943 0.771

Table 1. Spearman correlation between each pair of labelers

In general terms, correlation coefficients over 0.67 indicate strong
relationships. So we can conclude that the three labelers are in
strong correlation when they determine the performance of
classifiers.

3.4 The Failed Methods
In fact, we have tried several other approaches which do not work
well. Here is an example. The main idea is to build a bridge
between a query and the 67 KDDCUP categories by counting the
number of pages relating to both of them. We submitted a query
into search engines and got its related pages. This set of pages is
denoted by Pq. Similarly, we can get the related pages of a
category, using the category name directly as a query. This set of
pages is denoted by Pc. In practice, each Pq includes 100 pages for
each query, and each Pc includes 10,000 pages. Then we can
define a similarity between the target query and category as | Pq ∩
Pc |, where |.| is the size of a set. For each query, we can return the
most related categories by similarity. However, this method does
not seem to work. One possible reason is that there is a
correlation between some pairs of categories. For example, we
found that the overlap of the 10,000 retrieved pages of the
categories “computer\hardware” and “Living\Tools & Hardware”
are about 1000 pages. Therefore we removed the overlapping
pages between each pair of categories. We repeated the above
approach. However, the final result is not satisfactory. One reason
for the failure of this method is that the retrieved pages cannot
effectively represent the semantics of a category. The essence of
the problem is how to automatically find the exact collection of

Page 108Volume 7, Issue 2SIGKDD Explorations

pages that can well represent the semantics of a query and a
category. This is a problem that needs further study.
We also tried another method based on a dictionary which does
not work well either. We submitted a query q into dictionary
software, e.g., WordNet, to get the related words of a query. The
result is denoted as Rq. The result includes the synonyms or
antonyms of the given query, which can be a verb, a noun, or an
adjective, among others. Take the query “car” as an example, the
result contains: car, auto, automobile, machine, motorcar, railcar,
railway car, railroad car and cable car, and so on. Similarly, we
can get the result of every category c through the same way which
is denoted as Rc. A similarity between the target query and
category is defined as | Rq ∩ Rc | as shown before. We can build a
matrix and get the most relevant categories based on similarity for
every query. When we test this method on the validation dataset,
the F1 is only about 20%. The main reason for the poor
performance is that this method cannot obtain proper results for
many queries through WordNet. If more dictionaries like
Wikipedia are leveraged, the performance of this kind of method
might be improved.

4. CONCLUSION AND FUTURE WORK
In this paper, we presented our approach to solving the query
classification problem provided by KDDCUP 2005. Query
classification is an important as well as a difficult problem in the
field of information retrieval. Once the category information for a
query is known, the search engine can be more effective and can
return more representative Web pages to the users. However,
since the queries usually contain too few words, it is hard to
determine their meanings. Another challenge in KDDCUP 2005 is
that, no training data are provided for the classification task. What
is more, the semantics of the predefined category structure in
KDDCUP 2005 are not given explicitly.
To solve the task of KDDCUP 2005, we rely on some extra
(external) information to overcome these difficulties. Therefore,
we proposed an ensemble search based method which consists
two phases with the second phase containing two stages. Phase I
corresponds to the training phase of machine learning research
and phase II corresponds to testing phase. In phase I, two kinds of
base classifiers are developed. One is synonym-based and the
other is statistics based. At the first stage of phase II, the queries
are enriched in that the related Web pages together with their
category information are collected for each query through search
engines. In the second stage, the queries are classified through
the classifiers trained in phase I. The synonym-based classifiers
perform classification using the category information of the
related Web pages for each query while the statistical classifier
uses the contents of the related pages for each query. The
experimental results on the two datasets provided by the
KDDCUP 2005 organizer validate the effectiveness of these
classifiers. By combining these two kinds of classifiers through
two different strategies, we obtained two ensemble classifiers.
One is expected to achieve higher precision with the help of the
validation dataset and the other is expected to achieve a higher F1
without using the validation dataset. Both our experimental results
on the datasets and the evaluation results given by the organizers
verified the effectiveness of our approach.
Our proposed approach is proved to be very effective for the
query classification problem. We have designed a demonstration
system called Q2C@UST, with a dedicated Web site at

http://webproject1.cs.ust.hk/q2c/. Our success is due to two
factors: one is the method for enriching queries and the other is
the method of combining the base classifiers. In the future, we
will conduct more research work following the two directions: 1)
we would try to find more valuable extra information for the
queries based on which we can build the base classifiers; 2)we
will conduct some further research to find some more effective
strategies to generate ensemble classifiers.

5. ACKNOWLEDGMENTS
We thank Hong Kong RGC Grant HKUST # 03/04.EG01 HKBU
2/03C, HKUST 6187/04E and Hong Kong University of Science
and Technology, Department of Computer Science and Computer
Systems Group for their kind support. We also thank KDDCUP
2005 organizers for their suggestions on this paper.

6. REFERENCES
[1] E. Bauer, R. Kohavi. An empirical comparison of voting

classification algorithms: Bagging, boosting and variants.
Machine Learning, 36:1/2, 105-142. 1999.

[2] D. Beeferman and A. Berger. Agglomerative clustering of a
search engine query log. In Proceedings of the sixth ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 407-415, 2000.

[3] L. Breiman. Bagging predictors. Machine Learning, 24:2,
123-140. 1996.

[4] R. Caruana and A. Niculescu-Mizil. Ensemble selection from
libraries of models. In Proc. 21th International Conference
on Machine Learning (ICML'04), 2004.

[5] C. Chekuri, M. Goldwasser, P. Raghavan and E. Upfal. Web
Search Using Automated Classification. Poster at the Sixth
International World Wide Web Conference (WWW6), 1997.

[6] H. Chen, S. Dumais. Bringing order to the Web:
Automatically categorizing search results. In Proceedings of
the ACM SIGCHI Conference on Human Factors in
Computing Systems (CHI), pages 145-152, The Hague, The
Netherlands, April 2000.

[7] T. G. Dietterich. Ensemble methods in machine learning.
First International Workshop on Multiple Classifier Systems,
pages 1-15, 2000.

[8] W. Fan, S. Stolfo, J. Zhang. The application of AdaBoost for
distributed, scalable and on-line learning. In Proceedings of
the Fifth SIGKDD International Conference on Knowledge
Discovery and Data Mining, 362-366. 1999.

[9] Y. Freund, R. E. Schapire. Experiments with a new boosting
algorithm. In Proceedings of the Thirteenth International
Conference on Machine Learning, 148-156. 1996.

[10] Google, http://www.google.com
[11] P. G. Hoel, Elementary Statistics, Wiley, 1971.
[12] T. Joachims. Transductive inference for text classification

using support vector machines. In Proc. 16th International
Conference on Machine Learning (ICML), Bled, Slovenia,
June 1999.

[13] T. Joachims (1998): Text Categorization with Support
Vector Machines: Learning with Many Relevant Features.
European Conference on Machine Learning (ECML), Claire
Nédellec and Céline Rouveirol (ed.), 1998.

Page 109Volume 7, Issue 2SIGKDD Explorations

[14] K. S. Jones. Automatic Keyword Classification for
Information Retrieval. Butterworths, London, 1971.

[15] I.H. Kang, G. Kim, Query type classification for web
document retrieval. In Proceedings of the 26rd annual
international ACM SIGIR Conference on Research
and Development in Information Retrieval. Toronto,
Canada, 2003, 64-71.

[16] J. Kittler, M. Hatef, R. P.W. Duin, and J. Matas. On
Combining Classifiers. IEEE Trans. Pattern Analysis and
Machine Intelligence, Vol. 20, No. 3, 1998, pp. 226-239.

[17] Lemur, http://www.lemurproject.org/
[18] D.D. Lewis, W. A. Gale. A sequential algorithm for training

text classifiers. In W. Bruce Croft and Cornelis J. van
Rijsbergen, editors, Proceedings of SIGIR-94, 17th ACM
International Conference on Research and Development in
Information Retrieval, pages 3-12, Dublin, IE, 1994.
Springer Verlag, Heidelberg, DE.

[19] Y.Li, Z.J.Zheng, K.Dai. KDD-CUP 2005. Presentation on
The Eleventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. Chicago, USA.
August 21, 2005. http://kdd05.lac.uic.edu/kddcup.html.

[20] Looksmart, http://www.looksmart.com
[21] ODP: Open Directory Project, http://dmoz.com
[22] L. Page, S. Brin, R. Motwani, and T. Winograd. The

PageRank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library Technologies
Project, Stanford University, Stanford, CA, USA, 1998.

[23] J. R. Quinlan. Bagging, boosting and C4.5. In proceedings
of the Thirteenth National Conference on Artificial
Intelligence, 725-730. 1996.

[24] C.J. van Rijsbergen. Information Retrieval. Second Edition,
Butterworths, London, 1979, 173-176.

[25] Wordnet, http://wordnet.princeton.edu/

About the authors:

Dou Shen is a Ph. D. student in the Department of Computer
Science at Hong Kong University of Science and Technology. His
research interest includes machine learning and data mining,
especially in the field of sequential data mining and text mining.
Jian-Tao Sun is a Ph. D. candidate at the Department of Computer
Science and Technology, Tsinghua University at Beijing, China.
He was a visiting scholar at Hong Kong University of Science and
Technology when he took part in the KDDCUP 2005 competition.
His research interests include text mining, Web usage mining and
kernel methods.
Rong Pan is a postdoctoral fellow at Hong Kong University of
Science and Technology. His research interest includes machine
learning, data mining and case-based reasoning.
Jeffrey Junfeng Pan is a Ph. D student in the Department of
Computer Science at Hong Kong University of Science and
Technology. His research interest includes machine learning
and data mining. Currently, he is working on location estimation
and activity recognition in wireless (sensor) networks and
pervasive environments.
Kangheng Wu is a Ph. D. student in the Department of Computer
Science at Hong Kong University of Science and Technology. His
research interest includes automated planning and machine
learning, especially in the field of learning action models from
observed plans.
Jie Yin is currently a Ph. D. student in the Department of
Computer Science at Hong Kong University of Science and
Technology. Her research interests include artificial intelligence,
pervasive computing and data mining. Currently she is working
on location estimation and human behavior recognition from
sensory data in pervasive environments.
Qiang Yang (http://www.cs.ust.hk/~qyang) is a faculty member in
the Department of Computer Science at Hong Kong University of
Science and Technology. His research interests are artificial
intelligence, Web search, data mining and pervasive computing.

Page 110Volume 7, Issue 2SIGKDD Explorations

