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ABSTRACT 

In this paper, we describe our ensemble-search based approach, 
Q2C@UST (http://webproject1.cs.ust.hk/q2c/), for the query 
classification task for the KDDCUP 2005. There are two aspects 
to the key difficulties of this problem: one is that the meaning of 
the queries and the semantics of the predefined categories are 
hard to determine. The other is that there are no training data for 
this classification problem. We apply a two-phase framework to 
tackle the above difficulties. Phase I corresponds to the training 
phase of machine learning research and phase II corresponds to 
testing phase. In phase I, two kinds of classifiers are developed as 
the base classifiers. One is synonym-based and the other is 
statistics based.  Phase II consists of two stages.  In the first stage, 
the queries are enriched such that for each query, its related Web 
pages together with their category information are collected 
through the use of search engines.  In the second stage, the 
enriched queries are classified through the base classifiers trained 
in phase I. Based on the classification results obtained by the base 
classifiers, two ensemble classifiers based on two different 
strategies are proposed. The experimental results on the validation 
dataset help confirm our conjectures on the performance of the 
Q2C@UST system. In addition, the evaluation results given by 
the KDDCUP 2005 organizer confirm the effectiveness of our 
proposed approaches. The best F1 value of our two solutions is 
9.6% higher than the best of all other participants’ solutions. The 
average F1 value of our two submitted solutions is 94.4% higher 
than the average F1 value from all other submitted solutions.  
Keywords 
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1. INTRODUCTION 
Historically, search engine technologies and automatic text 
classification techniques have progressed hand in hand.  Ever 
since the early papers by the pioneers [14][18][22], people have 
recognized the possibility of conducting Web search through 
classification, and vice versa [2][5][6][15]. The KDDCUP 2005  
competition made this connection even stronger; the task being to 
automatically classify 800,000 of the queries on a Web search 
engine into a set of 67 predetermined categories provided by the 
organizers. This task deviates from the traditional machine 
learning and text classification formulation in the following 
aspects: 

• There are no training data available.  It is part of the 
task to collect the training data.  In fact, the manually 

annotated Web pages organized into topical directories 
could serve as the training data.  However, different 
parts of the Web may provide training data of different 
quality.  In contrast, text classification in machine 
learning and information retrieval has always included 
the training data as part of the input.  How to make the 
best use of the Web, including its directory resources 
and search tools, provides a fresh perspective. 

• The data are noisy and provide poor information.  Most 
queries are short. There are some mis-spelt queries.  
Many words have multiple meanings and belong to 
several categories. For example, “office” can mean the 
working place as well as a kind of software. In contrast, 
several queries may in fact mean the same thing, such 
as “mainboard” and “planar board”. 

• The target categories suffer a shortage of semantic 
meanings.  The 67 categories are provided without 
further explanation.  Therefore, simple exact matches 
between queries and category names would be certain 
to fail. 

Despite these difficulties, we are also encouraged by the 
possibility of answering some exciting questions through 
completing this challenging task.  We have the following 
questions: 

• How can machine learning, in particular classification, 
help in designing better search engines? 

• Conversely, how can search engines help us design 
better text classifiers? 

• How can the use of different training data impact on the 
quality of classification? 

• How can similarity-based classification and statistics 
based classification be best integrated together? 

In the sections that follow, we explain our choice of solutions as 
well as the results of testing these solutions on the validation and 
test data set provided by the competition organizers. One 
innovative aspect of our solution is the use of an ensemble of 
search engines to compose the classifiers, and an ensemble of 
classifiers to classify the massive input queries.  The ensemble of 
search engines and the final integration of the search result 
showed that with moderate validation data, we can achieve a high 
level of performance when we appropriately combine the query 
categorization results. 

2. OUR APPROACH 
As in any machine learning application, we also adopt two phases 
in our solution.  In phase I, which corresponds to the training 
phase of machine learning research, we collect data from the Web  
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Figure 1. The architecture of our approach Q2C@UST 
 

 
Figure 2. The two-stage framework in the “testing phase” of our approach Q2C@UST 

 
for training two base classifiers that map a query to the 67 
categories provided by the KDDCUP 2005 organizers (KDDCUP 
categories).   
In phase II, which corresponds to the “testing phase” in machine 
learning research, we process each query through a two-stage 
framework to handle the problem of query classifications. The 
overall framework of our approach is summarized in Figure 1  
and the detailed illustration of phase II is shown in Figure 2.  
Phase II consists of two stages performed in a row. The first stage 
is to enrich the queries by searching the relevant pages which can 

provide the meanings for the queries in order for them to be 
classified. Enrichment is necessary because the queries are rather 
short, and thus their meanings ambiguous.  We perform the 
enrichment process by finding the relevant text from related Web 
pages or the category information of these pages through Web 
search.   
The second stage of phase II is to classify the queries based on the 
data collected in the first stage and using the classifiers trained in 
the first phase. At this stage, based on the classification results 
through the two kinds of base classifiers, two ensemble classifiers 
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with different ensemble strategies are employed to classify the 
queries.  
The experimental results show that the ensemble classifiers can 
improve the classification performance significantly.  

2.1 Phase I: Training base Classifiers 
We now discuss phase I of our approach: training classifiers for 
query classification. As noted above, a main problem of our task 
is the lack of training data.  This is a new problem in machine 
learning: without training text documents with class labels, many 
previous methods cannot be used. 
We tackle this problem by developing two kinds of base 
classifiers, which we later combine in an ensemble-search based 
classifier (Section 2.3). The first kind of base classifier is the 
synonym-based classifiers which uses the category information 
associated with Web pages collected for each query. The second 
kind of base classifier is statistical classifiers in which Support 
Vector Machine (SVM) is employed. We obtain two ensemble 
classifiers by combining these two kinds of classifiers according 
to different ensemble strategies, which improves the classification 
performance significantly more than the base classifiers.  

2.1.1 Synonym-based Classifiers 
As discussed in Section 2.1, after the query enrichment stage, we 
obtain a ranked category list for each query through a search 
engine. Since the category hierarchies from different search 
engines are distinct, the categories in different ranked lists vary a 
lot. In addition, the hierarchies of the search engines differ greatly 
from that given in the KDDCUP 2005 competition task. For 
convenience, we call the former the search engine space for a 
search engine, and the latter the KDDCUP space. For a particular 
search engine, our objective is to build a mapping function 
between the two spaces. Using this mapping function, we can 
classify a query into the 67 KDDCUP categories.  
The mapping function can be built by keyword matching. We 
compare the keywords of categories in the KDDCUP space with 
those in the space of a certain search engine. Consider two 
categories, c1 and c2, where c1 is from the space of KDDCUP and 
c2 is from the space of a certain search engine. If they share some 
of the same keywords, we can map c2 to c1 directly. The 
categories in the space of KDDCUP have two levels, such as, 
“Computers\Hardware” and “Entertainment\Other”. The second 
level specifies a particular field within the first level. For most of 
the categories in the space of KDDCUP, we only consider the 
keywords at the second level because they are not confused with 
other categories.  A typical example is “Computers/Internet & 
Intranet”. Even when we do not consider the first level for all the 
categories, there are no other categories which can be confused 
with “Internet & Intranet”. 
However, there are many categories that are more difficult to deal 
with.  For them we require that the keywords in the first level and 
the second level should simultaneously match the categories in 
the space of a certain search engine. Otherwise, we cannot 
distinguish between two categories that share the same keywords 
only in the second level, such as “Computers/Hardware” and 
“Living/Tools & Hardware”. Although they both have the 
keywords “Hardware” in the second level, they belong to two 
different domains “Computers” and “Living” in the first level. We 
give two examples to illustrate the above two cases:  

• “…/internet/…” is mapped to “Computers/Internet and 
Intranet”; 

• “…/Computers/…./Hardware/…” is mapped to 
“Computers/Hardware” while “…/Living/…/Hardware/…” 
is mapped to “Living\Tools & Hardware”. 

In the implementation of the keywords matching method, we need 
to consider three special cases.  

• On the second level of categories from the space of 
KDDCUP, the words connected by “&” can individually 
specify a concept. For example, in “Computers\Internet & 
Intranet”, both “Internet” and “Intranet” can represent an 
individual concept. However, the words connected by a 
space can specify a concept only when they are joined 
together. One example is “Sports\Olympic Games” in which 
we need the two words together to define a concept. 
Therefore when matching the keywords, we take each word 
connected by “&” as a keyword and the combination of the 
words connected by space as keywords. 

• We extend the keywords to include both the singular and 
plural forms in advance. For example “Living\Book & 
Magazine” is extended to “Living\Book & Magazine & 
Books & Magazines”. Then we can conduct exact matching 
without missing any possible mapping. 

• Seven out of the 67 KDDCUP categories just have a 
keyword “Other” on the second level, such as 
“Computers/Other”. It is impossible to determine their 
semantics without taking other categories into consideration. 
In our approach, given a KDDCUP category, say 
“Computers/Other”, we firstly collect all the categories 
containing the first level keyword, “Computers”, in the space 
of a search engine. Then we remove the ones which can be 
mapped to other KDDCUP categories with the same first 
level as the target categories. 

After applying the above direct mapping procedure, we may still 
miss a large number of mappings; many categories in the space of 
a search engine do not occur in the space of KDDCUP although 
they share words with the same meanings. In response, we expand 
the keywords in each label in the KDDCUP categories through 
WordNet [25]. For example, the keyword “Hardware” is extended 
to “Hardware & Devices & Equipments” and the keyword 
“Movies” is extended to “Movies & Films”. 
Using different search engines, we might have different category 
spaces. For each space, we can construct a mapping function 
between it and the space of KDDCUP categories. After obtaining 
these mapping functions, we can perform query classifications 
based on the category lists of each query collected in the data 
collection stage. For each category list of a target query, we map 
the categories to the space of KDDCUP according to the 
corresponding mapping function. We accumulate the number of 
times for each category in the space of KDDCUP being mapped 
onto. Then we can obtain the categories for the target query in the 
space of KDDCUP together with their occurrence count. By 
ranking the categories in terms of the occurrence count, we get a 
ranked list of KDDCUP categories into which the target query 
can be classified. Based on different category lists and their 
corresponding mapping functions, we gain different classification 
results. Here, we refer this kind of classifier as a synonym-based 
classifier. 

Page 102Volume 7, Issue 2SIGKDD Explorations



 

Based on the direct mapping approach, the synonym-based 
classifiers tend to produce results with high precision but low 
recall.  They produce high precision because the synonym-based 
classifiers are based on the manually annotated Web pages and 
can utilize the classification knowledge of editors. Therefore, 
once a mapping function is constructed, it is highly probable the 
classification result is correct. For example, we have shown that 
the categories such as “…/Computers/…./ Hardware/…” are 
mapped to “Computers/Hardware”. Therefore, once a Web page 
associated with a query falls in the category 
“Computers/Hardware/Storage/Hard_Drives”, we can assign 
“Computers/Hardware” to the query with high confidence. They 
produce low recall because it is hard to find all the mappings from 
the search-engine categories to the KDDCUP categories by 
keyword mapping. About 80,000 of the 354,000 categories in the 
category space of Google are not mapped onto the space of 
KDDCUP. Therefore, we cannot map all the categories in the 
category list for a query to the 67 KDDCUP categories and may 
miss some correct categories for the query. Another reason for the 
low-recall problem is that a search engine may return only a few 
or even no Web pages with categories. The synonym-based 
classifier may fail because of the search results shortage problem. 
Therefore, we need to construct other classifiers to help handle 
the low-recall problem which is described in the next section. 

2.1.2 Statistical Classifiers 
As discussed in the previous subsection, the synonym-based 
classifiers have a low-recall drawback. In order to address this 
problem, we proposed to use the statistical classifier to help 
classify queries. The statistical classifier classifies a query based 
on its semantic content. Thus even if the synonym-based classifier 
fails, a query can also be classified by a statistical classifier. In 
this paper, we use the Support Vector Machine (SVM) classifier 
because of its high generalization performance for document 
classification tasks and is easy to implement [12][13] . 
When SVM is used for classification tasks (e.g., document 
classification), the first step is to train a model using a set of 
training examples. Then the model can be used to classify other 
examples. Apparently, it is not straightforward to apply SVM for 
a query classification task. There are at least two problems as we 
have discussed. Firstly, there is no training data available, and we 
only have the names of the 67 categories. Secondly, it is easy for 
a human being to capture the semantic meanings of a query and to 
identify its categories. However, for a statistical classifier, we 
must put forward a method to represent a query, i.e., to construct 
a query’s features.  
The above problems are both dealt with in our approach. For the 
first problem, we collect the training examples for the 67 
categories by leveraging the mapping function constructed in the 
synonym-classifier learning step and the manually labeled Web 
page directory, such as ODP, etc. For each KDDCUP category, 
we can find a set of categories from the ODP directory by the 
mapping function. Thus Web pages contained in those collected 
ODP categories are used as the training documents for the target 
KDDCUP category. After the training examples are collected for 
each KDDCUP directory, the SVM training algorithm can be used 
to train the classifiers. For the second problem, we use the results 
returned by a search engine to help represent a query. As 
discussed in section 2.1, most queries contain only a few terms. 
Therefore, it is common that a query may be relevant to several 

topics. By leveraging the search results returned by a search 
engine, we try to capture the multiple topics relevant with the 
issued query. We keep the top N results (the parameter N are 
studied in section 3) and use the aggregate terms of the 
corresponding snippets, titles, URLs terms and the category 
names in the directory to represent the query. Finally, the query’s 
bag of terms is processed by stop-word removal, stemming and 
feature selection. The resultant term vector can be used as input 
for the SVM classifiers and a ranked list of categories for each 
query is produced. 
In our approach, the ODP directory is used for the purpose of 
collecting training documents. The SVMlight software package is 
used for training (http://svmlight.joachims.org/). The linear kernel 
is used and the one-against-rest approach is applied for the multi-
class case. The DF and the information gain methods are used for 
feature selection. For KDDCUP categories which contain too 
many training examples, we use a sampling approach to decrease 
the scale of SVM training.  
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Figure 3. Frequency of queries with different length 

 

2.2 Phase II, Stage I: Query Enrichment 
In our second phase, we have two stages.  In stage one, we take 
each query and enrich it so that there is a body of relevant text 
that represents this query.  This step is a key task because our goal 
is to classify 800,000 queries into 67 categories without any 
additional descriptions about these queries.  
The 800,000 queries vary a lot. They might be as simple as a 
single number such as “1939” or as complicated as a piece of 
programming code which involves more than 50 words.  shows 
the statistical information about the number of words in each 
query and the frequencies in the 800000 queries. From this figure 
we can see that queries containing 3 words are most frequent 
(22%). Furthermore, 79% of queries have no more than 4 words. 
Each query is a combination of words, name of persons or 
locations, URLs, special acronyms, program segments and 
malicious codes. Some queries contain words which are very 
clean while others may contain typos or meaningless strings 
which is totally noisy. Some words may just have their meanings 
as defined in a static dictionary while others may have some 
special meanings when used on the Internet. 
Moreover, the meaning of words may also evolve over time. For 
example, “apple” is a kind of fruit as given in a dictionary. 
However, it is also related to the name of a famous computer 
corporation nowadays. Thus, we cannot classify a query solely 

Page 103Volume 7, Issue 2SIGKDD Explorations



 

relying on a static and out-of-date training set. Instead, we should 
try to catch its meanings by asking the Internet, retrieving related 
documents and extracting its semantic features. What is more, in 
order to obtain a better and unbiased understanding of each query, 
we should not rely on a single search engine but combine multiple 
results from different search engines. 
In our approach, we send each query into Google [10], Looksmart 
[20] and a search engine developed by ourselves based on Lemur 
[17]. We chose these three search engines because they can 
provide both directory search and Web search. Directory search 
refers to search algorithms that return the related pages of a query 
together with the pages’ categories. Since these categories of Web 
pages are labeled by people, it is appropriate to use them as the 
ground truth to classify the queries.  However, not all the pages 
indexed by the search algorithm contain category information; in 
this aspect, Web search, which is used to refer to search algorithm 
as we typically use, can return more related pages that directory 
search cannot. Based on the content of the pages returned by Web 
search, we can classify the queries using a text classification 
algorithm. To enrich a query through search engines, we use the 
following three steps: 

1. In step one, we first try to get the related pages through 
“Directory Search”; 

2. In step two, if we cannot get sufficient results from step 
one, we try  to apply “Web Search” to the query to 
obtain the text; 

3. If the retrieved results from Step two are still not 
enough, we check whether the queries are too noisy. If 
so, we use some preprocessing approaches to clean 
them up and repeat step 1 and step 2.  Usually, after 
preprocessing on the noisy queries, we can obtain some 
meaningful and clean queries which make it possible to 
get new retrieved results through step 1 and step 2.  

We use Google as an example to illustrate the three steps as 
shown in Figure 4.  

• At the root level, all 800,000 queries are preprocessed 
by removing special characters such as “@,#,%” while 
keeping letters and digits. These 800,000 queries are 
first sent into the Google Directory Search. We can see 
from Figure 4 that we are able to retrieve related pages 
for 500,000 (63%) of all queries in this way. 

• We then send the remaining 300,000 queries into the 
Google Web Search and obtain results for the additional 
200,000 queries.  

• For the remaining 100,000 queries, we conduct further 
preprocessing. We use the function of “Did you 
mean…”, provided by Google to trigger the  search for 
the most relevant queries to the original ones. For 
example, given the query “a cantamoeba”, neither 
Google “Directory Search” nor “Web Search”   returned 
any results. However, by  trying  the  function “Did you  

 

 
Figure 4. Illustration of the three steps for query enrichment 
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mean…”, Google can return the results for the word 
“acanthamoeba” which is related to health, disease and 
medicine. In this way, we can get the results for 
another set of 60,000 queries from Google’s 
“Directory Search”or “Web Search”.  

• However, after this step, there are still 40,000 queries 
left without any results. These queries are very noisy. 
They are usually connected words without spaces, 
long meaningless clobbers, or URL addresses 
containing parameters or even malicious codes. We 
try to convert theses queries into meaningful ones by 
extracting words from them through a maximum 
matching method based on the dictionary WordNet 
[25]. This method tries to extract as many meaningful 
words as possible and any extracted words should be 
as long as possible. 
Take the query “wheelbearingproblemsdamage” as an 
example, Google can not return any results through 
either “Directory Search”, “Web Search” or even “Did 
you mean…”. Therefore, we can split the whole query 
into four meaningful words “wheel bearing problems 
damage”. After that, we can get reasonable results 
from Google “Directory Search” or “Web Search”. In 
this way, we can get the results for 30,000 out of the 
remaining 40,000 noisy queries.  

Based on the above procedures, there are only 10,000 queries 
without any pages returned from Google. These queries are 
inherently noisy and meaningless, such as “dddddfdfdfdfdf”. 
We do not have to deal with these queries. 
Note that in the query processing tree shown in Figure 4, the 
quality of the retrieved documents at different leave nodes may 
be different; the closer a node is to the root, the higher the 
quality of the result. Thus, the results of the 700,000 queries by 
applying “Directory Search” and “Web Search” are of high 
quality and reflect the true meanings of these queries. However, 
the results of the other 100,000 may not be reliable because we 
revise the queries to some extent. 
We follow the same steps when using Looksmart [20]. Among 
the 800,000 queries, about 200,000 queries have “Directory 

Search” results. 400,000 have “Web Search” results and the 
remaining 200,000 have no results. 
The third engine we use was developed by ourselves based on 
search engine constructor Lemur [17]. We first crawled 2 
million Web pages with the category information from Open 
Directory Project (ODP) [21]. Then we indexed the collection of 
these pages with Lemur. Given a query, Lemur can retrieve a 
number of pages which are most relevant to the query together 
with their corresponding categories. Therefore the function of 
this search engine based on Lemur and the ODP data is similar 
to the “Directory Search” provided by Google and Looksmart. 
Using this search engine, we can retrieve related pages for all 
but 35.000 of the 800,000 queries..  
In summary, after enriching the queries through a search engine, 
we can obtain two lists for representing each query. One is the 
relevant Web pages list. The other is a category list 
corresponding to the Web pages in the Web page list.  

2.3 Phase II, Stage II: Query Classification 
through Ensemble Classifiers 
From Phase I, we have constructed various classifiers which can 
classify the input queries into the KDDCUP categories.  In this 
section, we discuss how we combine the results of these 
classifiers in the query-classification phase (testing phase) by an 
ensemble classifier, so that we can complete the task of query 
classification.  
An ensemble is a set of models whose predictions are combined 
by weighted averaging or voting. Dietterich states that "A 
necessary and sufficient condition for an ensemble of classifiers 
to be more accurate than any of its individual members is if the 
classifiers are accurate and diverse." [7] Recent work shows that 
models trained with different learning algorithms often make 
uncorrelated errors. Therefore, an ensemble of good models 
trained with different learning algorithms often outperforms the 
best model trained by one of the learning algorithms [4].  
Moreover, many empirical investigations have shown that  
ensemble learning methods often lead to significant 
improvements across a wide range of learning problems 
[1][3][8][9][23].
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Figure 5. The ensemble paradigm 
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We use two approaches to training the ensemble classifiers. The 
first is to make use of the validation data set which contains 111 
pairs of query-to-category mappings provided by the KDDCUP 
organizers, to adjust the combination weights.  The second 
approach is to ignore this validation data set in order to avoid 
overfitting. 
Our primary method in combining different classifier functions is 
to assign an ensemble weight value to the result returned by each 
classifier function, and rank the final list of classified categories.  
(See Figure 5) It is tricky to assign the ensemble weights.  
Different classifiers introduced in the above sections have 
different performance. Some may work better than others on 
certain categories. For example, a classifier may achieve high 
precision on one category while having high recall on the other 
category. This indicates that it is not proper to assign a single 
weight to a classifier. Instead, we should differentiate the weight 
of a classifier on different classes according to its performance. 
To determine the weights, we validate each component classifier 
on the 111 samples given by the KDDCUP organizers.  The 
higher precision a classifier achieves on a category, the higher 
weight assigned to the classifier on that category.  As a result, 
each classifier may obtain a weight value Wij on a KDDCUP 
category j.  
However, the 111 samples may be too small to be a suitable 
validation data set as it is easy to be overfitting on these samples. 
Therefore, a conservative way to combine the classifiers is to 
assign equal weights to them.  
Both the weight-assignment strategies in ensemble classifier 
construction are compared in the following experiments. 

3. EXPERIMENT AND DISCUSSION 
To test our proposed approach, we conduct some experiments on 
the datasets provided by the KDDCUP 2005 organizer. The 
experimental results validate the effectiveness of our approach. In 
addition, we give some analysis of the consistency of the three 
labelers on their judgment of the performance of the classifiers in 
this part. 

3.1 Dataset 
The KCCCUP2005 organizer provides a dataset which contains 
111 sample queries together with the manual categorization 
information. These samples help exemplify the format of the 
queries and provide the semantics of a tiny number of queries. In 
fact, since the category information of these queries is truthful, 
they can serve as the ground truth for the test data and validation 
data for our proposed classifiers. Later, after the competition is 
finished, to test the solutions submitted by the participants, the 
organizer provides another dataset which contains 800 queries 
with labels from three human labelers. We denote the three 
labelers (and sometimes the dataset labeled by them if no 
confusion is caused) as L1, L2 and L3, respectively. We refer to 
the former as Sample Dataset and the latter as Testing Dataset in 
the following sections.  

3.2 Evaluation Criterion 
The evaluation criteria adopted by the KDDCUP organizer is the 
standard measures to evaluate the performance of classification in 
Information Retrieval (IR), including precision, recall and F1-
measure [24]. The definitions of precision, recall and F1 in the 
query classification context are given below: 
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For the Sample Dataset, we report the precision, recall and F1 
evaluation results for each classifier. For the Testing Dataset, 
three labelers are asked to label the queries, thus the results 
reported on this dataset are the average values[19]. Take the 
calculation of F1 as an example: 
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3.3 Experimental Results and Explanation  
As introduced in the previous section, we have a total of six 
classifiers, three synonym-based classifiers, one statistical 
classifier that is SVM and two ensemble classifiers. For simplicity, 
we refer to the three synonym-based classifiers which rely on 
Google, Looksmart, and Lemur as S1, S2 and S3 respectively. We 
denote the ensemble classifier which relies on the validation 
dataset as EV and the one that does not rely on validation data as 
VN. In the following part, we first investigate the two main 
parameters which affect the performance of our proposed 
classifiers on the sample dataset and then we compare the 
performance of those classifiers. Finally, we give some analysis 
of the consistency of the three labelers on their judgment of the 
classifiers’ performance. 

3.3.1 Parameter Tuning 
There are two main parameters which significantly impact on the 
performance of our proposed classifiers. One is how many related 
pages we should use for each query. If we use too few pages, we 
may fail to cover all the diverse topics of a query. However if we 
use too many pages, we may introduce much noise. Another 
parameter is how many labels we should assign to each query. 
The competition rules allow us to assign at most 5 labels for each 
query. However, in order to achieve higher precision, we should 
assign fewer but very accurate labels. If we hope to achieve 
higher recall, we need to assign more possible labels. 

Figure 6 shows the performance of different classifiers with 
respect to an increasing number of related pages used for 
classification. Here, the related pages are taken into consideration 
in the order they are returned by the search engines, that is in the 
order of the degree of relevance with the query. The results shown 
in Figure 6 verify our conjecture. As the number of related pages 
increases, the precision tends to decrease, although the precision 
for some classifiers increase at first. The reason is that we need a 
certain number of pages to get the meaning of the query. However, 
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if we include too many pages, noise may be introduced which can 
reduce the precision. From Figure 6, we can see that the critical 
point for most classifiers is 40. Before that point, the performance 
of the classifiers increases when we use more and more pages, 
while after that point the performance begins to decrease. 
Therefore in the following experiments we keep only the top 40 
pages for subsequent query classification. 

Figure 7 shows the performance of different classifiers by 
varying the number of classified categories. As we expected, 
when the number of classified categories increases, the precision 
of all the classifiers decreases while the recall increases 
significantly. In contrast, the value of F1 increases at the 
beginning and then subsequently decreases. For most of the 
classifiers, the maximum values of F1 are achieved when four 
categories are generated for each query. Although the F1 values 
are close to those obtained when 5 categories are assigned, the 
precision values are much lower. 
Based on the observation of the impact of two parameters, in 
order to achieve higher precision without sacrificing F1 much, we 
consider only the top 40 related pages of a query and return 4 
categories for each query in most cases. 
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Figure 6. Performance of different classifiers with the number 
of used related pages on the 111-sample dataset 
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Figure 7. Performance of different classifiers with the number 
of classified categories on the 111-sample dataset 

 

3.3.2 Comparison between Classifiers  
From the above experimental results on the Sample Dataset, we 
can see that among the four base classifiers, S1 works best while 
S2 works worst. The reason why S2 does not work well is that for 
many queries, we cannot obtain enough related pages through the 
Looksmart search engine. For SVM, we expect that it can solve 
the low-recall problem caused by the three synonym-based 
classifiers, as discussed in section 2.1.1. Figure 6 and Figure 7 
show that SVM obtains the highest recall in most cases. We also 
notice that the two ensemble classifiers can achieve better 
performance in terms of F1 than any other base classifier. For the 
peak F1 values of the three best classifiers (EN, EV and S1), we 
can see that, compared with S1, EN and EV improve the F1 by 
4.53% and 8.67% respectively. In fact,  when we design these two 
ensemble classifiers, EV is expected to achieve higher precision 
measure because each component classifier is highly weighted on 
the classes where it achieves high precision and EN is expected to 
achieve higher F1 performance since the recall is relatively high. 
According to our two submitted results, the F1 value of EN (0.444) 
achieves 4.2% improvement compared with the F1 value of EV 
(0.426). While the precision value of EV (0.424) improves by 
2.3% compared with that of EN (0.414).  
The effectiveness of our proposed ensemble classifiers can also be 
validated when compared with the other participants’ solutions on 
the Testing Dataset. The F1 value of our solution generated by 
EN is 9.6% higher than the best one among other participants’ 
results. The averaged F1 value of our submitted results is 94.4% 
higher than the averaged F1 value of all the others. 

3.3.3 Analysis of the Consistency between the Three 
Labelers 
In this section, we analyze and discuss the consistency between 
the three labelers on their judgment of the performance of the 
classifiers. 
Figure 8 shows the F1 values of the six classifiers developed by 
us on the testing data labeled by the three labelers. From Figure 8, 
we can see that the three labelers have a high correlation with 
respect to the relative performance of the classifiers, especially 

labeler 1 and labeler 3. After ranking the six classifiers according 
to each labeler, we calculate the spearman rank-order correlation 
coefficient between each pair of the labelers [11]. The Spearman 
correlation is a nonparametric approach to calculating the 
relationship between two variables based on ranking the two 
variables and no assumption about the distribution of the values is 
made. The results are shown in Table 1. 
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L1.vs.L2 L1.vs.L3 L2.vs.L3 

0.829 0.943 0.771 

Table 1. Spearman correlation between each pair of labelers 
 

In general terms, correlation coefficients over 0.67 indicate strong 
relationships. So we can conclude that the three labelers are in 
strong correlation when they determine the performance of 
classifiers. 

3.4 The Failed Methods 
In fact, we have tried several other approaches which do not work 
well. Here is an example. The main idea is to build a bridge 
between a query and the 67 KDDCUP categories by counting the 
number of pages relating to both of them. We submitted a query 
into search engines and got its related pages. This set of pages is 
denoted by Pq. Similarly, we can get the related pages of a 
category, using the category name directly as a query. This set of 
pages is denoted by Pc. In practice, each Pq includes 100 pages for 
each query, and each Pc includes 10,000 pages. Then we can 
define a similarity between the target query and category as | Pq ∩ 
Pc |, where |.| is the size of a set. For each query, we can return the 
most related categories by similarity. However, this method does 
not seem to work.  One possible reason is that there is a 
correlation between some pairs of categories. For example, we 
found that the overlap of the 10,000 retrieved pages of the 
categories “computer\hardware” and “Living\Tools & Hardware” 
are about 1000 pages. Therefore we removed the overlapping 
pages between each pair of categories.  We repeated the above 
approach. However, the final result is not satisfactory. One reason 
for the failure of this method is that the retrieved pages cannot 
effectively represent the semantics of a category. The essence of 
the problem is how to automatically find the exact collection of 
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pages that can well represent the semantics of a query and a 
category. This is a problem that needs further study. 
We also tried another method based on a dictionary which does 
not work well either. We submitted a query q into dictionary 
software, e.g., WordNet, to get the related words of a query. The 
result is denoted as Rq. The result includes the synonyms or 
antonyms of the given query, which can be a verb, a noun, or an 
adjective, among others. Take the query “car” as an example, the 
result contains: car, auto, automobile, machine, motorcar, railcar, 
railway car, railroad car and cable car, and so on. Similarly, we 
can get the result of every category c through the same way which 
is denoted as Rc. A similarity between the target query and 
category is defined as | Rq ∩ Rc | as shown before. We can build a 
matrix and get the most relevant categories based on similarity for 
every query. When we test this method on the validation dataset, 
the F1 is only about 20%. The main reason for the poor 
performance is that this method cannot obtain proper results for 
many queries through WordNet. If more dictionaries like 
Wikipedia are leveraged, the performance of this kind of method 
might be improved. 

4. CONCLUSION AND FUTURE WORK 
In this paper, we presented our approach to solving the query 
classification problem provided by KDDCUP 2005. Query 
classification is an important as well as a difficult problem in the 
field of information retrieval. Once the category information for a 
query is known, the search engine can be more effective and can 
return more representative Web pages to the users.   However, 
since the queries usually contain too few words, it is hard to 
determine their meanings. Another challenge in KDDCUP 2005 is 
that, no training data are provided for the classification task. What 
is more, the semantics of the predefined category structure in 
KDDCUP 2005 are not given explicitly.  
To solve the task of KDDCUP 2005, we rely on some extra 
(external) information to overcome these difficulties. Therefore, 
we proposed an ensemble search based method which consists 
two phases with the second phase containing two stages. Phase I 
corresponds to the training phase of machine learning research 
and phase II corresponds to testing phase. In phase I, two kinds of 
base classifiers are developed. One is synonym-based and the 
other is statistics based. At the first stage of phase II, the queries 
are enriched in that the related Web pages together with their 
category information are collected for each query through search 
engines.  In the second stage, the queries are classified through 
the classifiers trained in phase I. The synonym-based classifiers 
perform classification using the category information of the 
related Web pages for each query while the statistical classifier 
uses the contents of the related pages for each query. The 
experimental results on the two datasets provided by the 
KDDCUP 2005 organizer validate the effectiveness of these 
classifiers. By combining these two kinds of classifiers through 
two different strategies, we obtained two ensemble classifiers. 
One is expected to achieve higher precision with the help of the 
validation dataset and the other is expected to achieve a higher F1 
without using the validation dataset. Both our experimental results 
on the datasets and the evaluation results given by the organizers 
verified the effectiveness of our approach.  
Our proposed approach is proved to be very effective for the 
query classification problem.  We have designed a demonstration 
system called Q2C@UST, with a dedicated Web site at 

http://webproject1.cs.ust.hk/q2c/.  Our success is due to two 
factors: one is the method for enriching queries and the other is 
the method of combining the base classifiers. In the future, we 
will conduct more research work following the two directions: 1) 
we would try to find more valuable extra information for the 
queries based on which we can build the base classifiers; 2)we 
will conduct some further research to find some more effective 
strategies to generate ensemble classifiers.    
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